\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

2 tháng 7 2017

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

22 tháng 11 2016

a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)

b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)

c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)

( Kí hiệu n!=1.2.3.4...n)

22 tháng 11 2016

cảm ơn bạn nhiều nhiều nhiều lắm

30 tháng 8 2018

Ta có :

\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}\)

\(=\frac{\left(n+1\right)\left(n+n+2\right)}{2}\)

\(=\frac{\left(n+1\right)\cdot2\cdot\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\)

=> ĐPCM

26 tháng 9 2019

phân tích đa thức thành nhân tử

26 tháng 9 2019

 Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào

5 tháng 3 2020

Vừa làm vừa nháp nên bạn chú ý nhé ! 

ít nhất 1 trong 3 số bằng 1 thì ta nghĩ đến \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ab-ac-bc+a+b+c-1\)

\(=a+b+c-ab-bc-ca\) ( 1 )

Biến đổi giả thiết:\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)

Khi đó ( 1 ) = 0 => đpcm

a

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\) là SNT thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)

Mà n là số tự nhiên nên \(n^2+6n+10>n^2-6n+10\)

\(\Rightarrow n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)

Thay n=3 vào cái ban đầu ta được \(\left(n^2-8\right)^2+36=37\) ( là số nguyên tố )

5 tháng 3 2020

b/\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c=\frac{ab+bc+ca}{abc}\)

\(\Rightarrow a+b+c=ab+bc+ca\)

\(\Rightarrow a+b+c-ab-bc-ca=0\)

\(\Rightarrow abc+a+b+c-ab-bc-ca-1=0\)

\(\Rightarrow\left(a-ab\right)+\left(b-1\right)+\left(c-bc\right)+\left(abc-ac\right)=0\)

\(\Rightarrow-a\left(b-1\right)+\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)=0\)

\(\Rightarrow\left(b-1\right)\left(-a+1-c+ac\right)=0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

<=> a-1 =0 hoặc b-1 =0 hoặc c-1=0

<=> a=1 hoặc b=1 hoặc c=1 

Vậy trong 3 số a,b,c có ít nhất 1 số bằng 1