Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
Bài 1:
a) n thuộc N
b) để 4n + 5 chia hết cho 5
=> 4n chia hết cho 5
=> n chia hết cho 5
=> n thuộc bội dương của 5
c) để 38 - 3n chia hết cho n
=> 38 chia hết cho n
=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)
...
xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=>...
e) để 3n + 4 chia hết cho n -1
=> 3n - 3 + 7 chia hết cho n - 1
3.(n-1) +7 chia hết cho n - 1
...
Bài 2:
a) để 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
3.(n-1) + 5 chia hết cho n - 1
...
b) n^2 + 2n + 7 chia hết cho n + 2
n.(n+2) + 7 chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) n^2 + 1 chia hết cho n - 1
=> n^2 - n + n - 1 + 2 chia hết cho n - 1
=> (n+1).(n-1) + 2 chia hết cho n -1
=> 2 chia hết cho n - 1
d) n + 3 + 5 chia hết cho n + 3
e) n -1 + 7 chia hết cho n - 1
f) 4n - 2 + 7 chia hết cho 2n - 1
...
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Mà: n ∈ N ⇒ 2n + 1 là số lẻ
⇒ 2n + 1 ∈ {1; -1; 3; -3}
⇒ n ∈ {0; -1; 1; -2}
4n + 3 chia hết cho 2n + 6
(2n+6).2 chia hết cho 2n+6 => 4n + 12 chia hết cho 2n + 6
4n+3 chia hết cho 2n +6
4n+12 chia hết cho 2n + 6
=> 4n + 12 - 4n - 3 = 9 chia hết cho 2n +6
2n +6 thuộc {1;3;9}
n thuộc {-2,5;-1,5;1,5}
Trong các phần tử trên, không có phần tử nào thuộc N
=> Không tìm được số tự nhiên n sao cho 4n+3 chia hết cho 2n+6