K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .

30 tháng 1 2021

Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)

<=> (n2 + n)2 + (n2 + n) + 7 = k2

<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2

<=> 4k2 - (2n2 + 2n + 1)2 = 27

<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27

Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1

Lập bảng

2k + 2n2 + 2n + 1 27 9 -1 -3
2k - 2n2 - 2n - 1 1 3 -27 -9
     
     

 (tự tính)

3 tháng 7 2017

a) A=(n+1)(n+2)(n+3)(n+4)+1 

A= (n+1)(n+4)(n+2)(n+3)+1

A=(n2+5n+4)(n2+5n+6)+1

Đặt n2+5n+5 =y ta có:

A=(y-1)(y+1) +1 =y2-1+1=y2

\(\Rightarrow\)A= (n2+5n+5) là 1 số chính phương

b)Đề sai ở chỗ 2017.2018 sửa lại là: 2.2017.2018

Thì A = 20172+20182+2.2017.2018

     A = (2017+2018)2 

     A = 40352 là 1 số chính phương .

3 tháng 7 2017

thanks pn nhìu

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

28 tháng 3 2023

Cảm ơn bạn 

3 tháng 8 2023

`5.25.2.41.8`

`= 5.50.41.8`

`= 5.400.41`

`= 2000.41`

`= 82000`

3 tháng 8 2023

Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)

\(\Rightarrow n^2+4n+4+2009=p^2\)

\(\Rightarrow\left(n+2\right)^2+2009=p^2\)

\(\Rightarrow p^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)

mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)

Vậy \(n=1002\) thỏa đề bài