Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 + 3n chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
Mà n(n + 3) chia hết cho n + 3
=> 13 chia hết cho n + 3
n + 3 thuộc U(13) = {1;13}
n + 3 = 1 => n = -2
n + 3 = 13 => n = 10
Vì n là số tự nhiên nên n = 10
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
theo bài: 3n+13 chia hết cho 2n+6
=> 2(3n+13) chia hết cho 2n+6
=> 6n+26 chia hết cho 2n+6
=> 6n+18+8 chia hết cho 2n+6
=> 3(2n+6)+8 chia hết cho 2n+6
=> 8 chia hết cho 2n+6-> 2n+6 thuộc U(8)
ta có: U(8)=1;2;4;8
=> 2n+6 = 1;2;4;8
=> 2n= -5;-4;-2;2
=> n= -2,5;-2.-1;1
mà n thuộc N => n=1
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)
n2 +7n - 8 chia hết cho n + 3
n + 3 chia hết cho n +3
n(n + 3) chia hết cho n + 3
n2 + 3n chia hết cho n + 3
=> [(n2 + 7n - 8) - (n2 + 3n)] chia hết cho n + 3
(n2 + 7n - 8 - n2 - 3n) chia hết cho n + 3
4n - 8 chia hết cho n + 3
n + 3 chia hết cho n + 3
4(n + 3) chia hết cho n + 3
4n + 12 chia hết cho n + 3
< = > [(4n + 12) - (4n - 8) ] chia hết cho n + 3
20 chia hết cho n + 3
n + 3 thuộc U(20) = {1;2;4;5;10;20}
n + 3 = 1 => n = -2
n + 3 = 2 => n = -1
n + 3 = 4 => n = 1
n+ 3 = 5 => n = 2
n + 3 = 10 => n = 7
n + 3 = 20 => n = 17
Vậy n thuộc {1;2;7;17}
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
a,b cậu tự làm nha !
c) 6n + 30 chia hết cho n + 1
6n + 6 + 24 chia hết cho n + 1
6(n + 1) + 24 chia hết cho n + 1
=> 24 chia hết cho n + 1
=> n + 1 thuộc Ư(24) = {1; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24}
Xét 4 trường hopjc rồi tìm n nha
d) giống c
g) n2+ n + 5 chia hết cho n - 1
n2 - n + 2n + 5 chia hết cho n -1
n(n - 1) + 2n + 5 chia hết cho n - 1
=> 2n + 5 chia hết cho n - 1
=> 2n - 2 + 7 chia hết cho n -1
=> 2(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {1 ; 7}
còn lại giống bài c
h) n2 + 10 chia hết cho n + 1
n2 + n - n + 10 chia hết cho n + 1
n(n + 1) - n + 10 chia hết cho n +1
=> (-n) + 10 chai hết cho n + 1
=> (-n) - 1 + 11 chia hết cho n + 1
=> -(n + 1) + 11 chia hết cho n + 1
=> -11 chia hết cho n + 1
=> n + 1 thuộc Ư(-11) = {1 ; -1 ; 11 ; -11}
Còn lại giống bài c
Cậu áp dụng công thức này nè :
a chia hết cho m
b chia hết cho m
=> a + b hoặc a - b chia hết cho m
Và a chia hết cho m
=> a.n chia hết cho m
Nha!