Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Ta có: n + 4 chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
Ta có: n + 1 chia hết chi n - 1
=> n - 1 + 2 chia hết cho n - 1
=> 2 chia hết cho n - 1
=> n - 1 thuộc Ư(2) = {1;2}
=> n = {2;3}
Còn lại tương tự nha
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a. n+7=k(n-3)
n=(3k+7)/(k-1)=3k+8/(k-1)
8/(k-1) phải tự nhiên
k-1=(2,4,8)
k=(3,5,9)
n=(13,19,36)
n+1\(⋮\)7
\(\Rightarrow\)5n+1+14\(⋮7\)
\(\Rightarrow5n+15⋮7\)
\(\Rightarrow5(n+3)⋮7\)
\(\Rightarrow n+3⋮7\left(vi(5:7)=1\right)\)
\(\Rightarrow n+3\in B_{\left(7\right)}\)
\(\Rightarrow n+3=7k\left(k\inℕ^∗\right)\)
\(\Rightarrow n=7k-3\)
vậy n có dạng 7k-3
a, Ta có : 2n + 19 chia hết cho 7
\(\Rightarrow\) \(2n+19\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow\) \(2n+19\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow\) \(2n\in\left\{20;18;26;12\right\}\)
\(\Rightarrow\) \(n\in\left\{10;9;13;6\right\}\)