Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Ta có :
\(P=\)\(\left(n^2-3\right)^2+16\)
\(=n^4-6n^2+9+16\)
\(=n^4-16n^2+10n^2+25\)
\(=\left(n^4+10n^2+25\right)-16n^2\)
\(=\left(n^2+5\right)^2-\left(4n\right)^2\)
\(=\left(n^2+5-4n\right)\left(n^2+5+4n\right)\)
Để P là số nguyên tố cần \(\orbr{\begin{cases}n^2+5-4n=1\\n^2+5+4n=1\end{cases}}\)
Mà nhận thấy \(\left(n^2+5-4n\right)< \left(n^2+5+4n\right)\)nên \(\Rightarrow n^2+5+4n=1\left(n\in N\right)\Leftrightarrow n^2+4n+5-4=0\)
\(\Leftrightarrow n^2+4n+4=0\Leftrightarrow\left(n+2\right)^2=0\)
\(\Leftrightarrow n-2=0\Leftrightarrow n=2\)
Vậy.................
Ghi sai số dòng thứ 4 từ dưới lên nha - là \(n^2+4n+5-1\) nha , k phải \(n^2+4n+5-4\)nha
thông cảm đánh sai số
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
\(n^3-n^2-n-2\)
\(=n^3-2n^2+n^2-2n+n-2\)
\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+n+1\right)\)
Điều kiện cần để \(n^3-n^2-n-2\)là số nguyên tố:
\(\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\\orbr{\begin{cases}n=0\\n=-1\left(loai\right)\end{cases}}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}}\)
Từ đó tìm được n = 3 và n = 0
Vì là điều kiện cần nên ta phải thử lại
\(n=3\Rightarrow n^3-n^2-n-2==13\)(thỏa mãn)
\(n=0\Rightarrow n^3-n^2-n-2=-2\) (loại)
Vậy n = 3
Chúc bạn học tốt.
\(n^3-n^2-n-2=n^3-2n^2+n^2-2n+n-2\)
\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)=\left(n-2\right)\left(n^2+n+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=3\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n^3-n^2-n-2=11\left(TM\right)\\n^3-n^2-n-2=-2\left(L\right)\end{cases}}}\)
Vậy n=3
A = n^2006 + n^2005 + 1
Với n = 1 thì A là số nguyên tố.
Xét n > 1
A = n^2006 + n^2005 + n^2004 - ( n^2004 - 1)
A = n^2004( n² + n + 1) - [ (n³)668 - 1] (1)
Ta có :
(n³)668 - 1 chia hết cho n³ - 1
n^2004 - 1 chia hết cho n² + n + 1 (2)
Từ (1) và (2) => nếu n> 1 thì A chia hết cho n² + n +1.
Vậy chỉ có n =1 thì A là số nguyên tố
Gọi A là biểu thức chứa n
\(n^3-n^2+n-1=\left(n-1\right)\left(n^2+1\right)\)
=> A chia hết cho n-1
TH 1 : n-1= -1
A = -1 => a k phải là số nguyên tố
TH2 : n-1 = 1 => n=2 => A là số nguyên tố
TH3 : n-1 = A => n2+1 = 1
=> A k là số nguyên tố