K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Ta có :

4n+5 chia hết cho n+2

Mà 4n+8chia hết cho n+2

=>(4n+5)-(4n+8) chia hết cho n+2

=>4n+5-4n+8 chia hết cho n+2

=>13 chia hết cho n+2

=>n+2 \(\in\left(1,13.-1,-13\right)\)

=>n\(\in\left(-1,11,-3,-15\right)\)

Do n thuộc N nên n=11

Vậy n=11

11 tháng 8 2019

Ủa??? Hình như bạn làm sai. Nếu làm như bạn sẽ là:

4.11+5chia hết cho 11+2

49chia hết cho 13(vô lý)

Bạn xem lại giúp mk vs ạ!!!

19 tháng 6 2017

Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)

\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)

\(\Leftrightarrow3x+3=10x-35\)

\(\Leftrightarrow3x-10x=-35-3\)

\(\Leftrightarrow-7x=-38\)

\(\Rightarrow x=\frac{38}{7}\)

19 tháng 6 2017

Ta có : \(\frac{x}{4}=\frac{9}{x}\)

\(\Rightarrow x^2=9.4\)

=> x= 36

=> x = +4;-4 

20 tháng 4 2023

Ta có: 2�−3⋮�+1

⇔−5⋮�+1

⇔�+1∈{1;−1;5;−5}

hay 

19 tháng 4 2023

2n-3 chia hết cho n+1

=> 2n+2-5  chia hết cho n+1

=> 2(n+1)-5  chia hết cho n+1

Mà 2(n+1)  chia hết cho n+1 => 5  chia hết cho n+1

=> n+1 thuộc Ư(5) ={1;-1;5;-5}

TH1: n+1=1 => n=0 thuộc Z

TH2: n+1=-1 => n=-2 thuộc Z

TH3: n+1=5 => n=4 thuộc Z

TH4: n+1=-5 => n=-6 thuộc Z

=> n thuộc {0;-2;4;6}

14 tháng 2 2018

Ta có : 

\(2n-1=2n-8+7=2\left(n-4\right)+7\) chia hết cho \(n-4\)\(\Rightarrow\)\(7⋮\left(n-4\right)\)\(\Rightarrow\)\(\left(n-4\right)\inƯ\left(7\right)\)

Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)

Suy ra : 

\(n-4\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(5\)\(3\)\(11\)\(-3\)

Vậy \(n\in\left\{5;3;11;-3\right\}\)

Năm mới zui zẻ ^^

12 tháng 1 2018

6 là bội của n+1

=> 6 chia hết cho n+1

=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n+1-1-2-3-61236
n-2-3-4-70125

Vậy n={-7,-4,-3,-2,0,1,2,5}

18 tháng 7

6 là bội của n+1

=> 6 chia hết cho n+1

=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n+1 -1 -2 -3 -6 1 2 3 6
n -2 -3 -4 -7 0 1 2 5

Vậy n={-7,-4,-3,-2,0,1,2,5}

 

16 tháng 1 2018

\(A=7+7^2+7^3+7^4+...+7^{4n}\)

\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(=7\cdot400+...+7^{4n-3}\cdot400\)

\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)

14 tháng 7 2016

\(3n:\left(n-1\right)\)

\(\Rightarrow3n-3+3:\left(n-1\right)\)

\(\Rightarrow3\left(n-1\right)+3:\left(n-1\right)\)

\(\Rightarrow3:\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{1;3\right\}\)

thế n-1 vô từng trường hợp các ước của 3 rồi tìm n nha

dấu : là chia hết nha

14 tháng 2 2016

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

13 tháng 2 2016

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

20 tháng 2 2016

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

22 tháng 2 2016

Nhọ Nồi Dù sao thì cx camon's -_-