Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
a: n+13 chia hết cho n-5
=>n-5+18 chia hết cho n-5
=>n-5 thuộc {1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}
mà n là số tự nhiên
nên n thuộc {6;4;7;3;8;2;11;14;23}
b: 6n-9 chia hết cho 2n-2
=>6n-6-3 chia hết cho 2n-2
=>2n-2 thuộc {1;-1;3;-3}
mà n là số tự nhiên
nên n thuộc rỗng
a) Ta có : 3n+6 chia hết cho 3n+6
=>2(3n+6) chia hết cho 3n+6
=> 6n+3-6n+12 chia hết cho 3n+6
-9 chia hết cho 3n+6
=> 3n+6 thuộc Ư(-9)={1,-1,3,-3,9,-9}
3n={-5,-7,-3,-9,3,-15}
n={-1,-3,1,-5}
a) n không có giá trị
b) n = 2
c) n= 6 ;8
d)n khong có giá trị
e) n= 3
Để phân số \(B=\dfrac{6n+5}{5n+6}\) rút gọn được thì 6n+5 và 5n+6 cùng chia hết cho d(Điều kiện: d∈N và d>1)
⇔6n+5-5n-6⋮d
⇔n-1⋮d
mà 5n+6⋮d
nên 5n+6-5(n-1)⋮d
⇔5n+6-5n+5⋮d
⇔11⋮d
⇔d∈Ư(11)
⇔d∈{1;11}
Kết hợp ĐKXĐ, ta được: d=11
⇔n-1=11k(k∈N)
hay n=11k+1(k∈N)
Vậy: Khi n=11k+1(k∈N) thì \(B=\dfrac{6n+5}{5n+6}\) rút gọn được
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}
GIẢI:
Để (n+5)(n+6)⋮6n(n+5)(n+6)⋮6n thì (n+5)(n+6)6n∈N(n+5)(n+6)6n∈N
Xét (n+5)(n+6)6n=n2+11n+306n=16(n+11+30n)(n+5)(n+6)6n=n2+11n+306n=16(n+11+30n)
Để (n+5)(n+6)6n∈N(n+5)(n+6)6n∈N thì n∈Ư30n∈Ư30
Sau đó thử vào 16(n+11+30n)16(n+11+30n) để loại các giá trị
\(\Rightarrow\) n∈{1;3;10;30}x∈1;3;10;30
Xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n
Xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N)
A=n2+11n+30
Để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là
1,2,3,5,6,10,15,30
Trong đó 2,5 có dạng 3k+2 nên ta loại
vậy n \(\in\) {1,3,6,10,15,30}