K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
10 GP
Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1
Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)
Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)
\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)
Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không
Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn
Vậy n=1 hoặc n=5
Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1
*Xét 7n+13\(⋮\)n+1(1)
+)Ta có:n+1\(⋮\)n+1
=>7.(n+1)\(⋮\)n+1
=>7n+7\(⋮\)n+1(2)
+)Từ (1) và (2)
=>(7n+13)-(7n+7)\(⋮\)n+1
=>7n+13-7n-7\(⋮\)n+1
=>6\(⋮\)n+1
=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}
=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}
=>n\(\in\){1;2}(*)
*Xét 7n+13\(⋮\)3n+1
=>3.(7n+13)\(⋮\)3n+1
=>21n+39\(⋮\)3n+1(3)
+)Ta có:3n+1\(⋮\)3n+1
=>7.(3n+1)\(⋮\)3n+1
=>21n+7\(⋮\)3n+1(4)
+)Từ (3) và (4)
=>(21n+39)-(21n+7)\(⋮\)3n+1
=>21n+39-21n-7\(⋮\)3n+1
=>32\(⋮\)3n+1
=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}
+)Ta có bảng:
=>n\(\in\){1;5}(**)
+)Từ (*) và (**)
=>n=1
Vậy n=1
Chúc bn học tốt