Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
chứng minh chia hết cho 3 nè
s=\(2+2^2+2^3+...+2^{100}\)
s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
s=\(2.3+2^2.3+...+2^{99}.3\)
s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)
chứng minh chia hết cho 5
s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
s=\(2.15+...+2^{97}.15\)
s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5
mong là có thể giúp được bạn
BÀi 2
( x+ 1 )+ ( x +2 ) + ... + ( x + 100) = 5750
x + 1 +x + 2 + .. x+ 100 = 5750
(x+ x+ .. +x ) + ( 1+ 2 + ... +100) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
1, xy-2x+3y=9
<=> xy-2x+3y-9=0
<=> x(y-2) + 3(y-2)=0
<=>(y-2)(x+3)=0
<=>+) y-2=0 <=> y=2
+)x+3=0<=>x=-3
Giúp mình đi ạ !
Ta có:
S(5n)-S(2n)=số chẵn
<=> S(5^n) và S(2^n) là số chẵn
<=> 5^n và 2^n số chẵn
<=> n là số chẵn