Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.
\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)
\(\Rightarrow a^2-n^2=2002\)
\(\Rightarrow a^2+an-an-n^2=2002\)
\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)
\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)
Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)
\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)
Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)
mà 2002 không chia hết cho 4
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài
a, 6 chia hết cho n-1
=>n-1 thuộc Ư(6)={1;2;3;6}
=>n thuộc {2;3;4;7} (vì n thuộc N)
b,14 chia hết cho 2n+3
=>2n+3 thuộc Ư(14)={1;2;7;14}
=>n thuộc {2} (vì n thuộc N)
c , n+8 chia hết n+1
=>n+1+7 chia hết n+1
=>7 chia hết n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;6} (vì n thuộc N)
a) Vì n+3 chia hết n-1
=> (n+3) - (n-1) chia hết n-1
=> n + 3 - n + 1 chia hết n-1
=> 4 chia hết n-1
=> n-1 thuộc {-1;1;2;4}
=> n thuộc {0;2;3;5}
b) Vì 4n+3 chia hết cho 2n-1
=> (4n+3) - 2(2n-1) chia hết cho 2n-1
=> 4n + 3 - 4n +2 chia hết cho 2n-1
=> 5 chia hết 2n-1
=> 2n-1 thuộc {-1;1;5}
=> 2n thuộc {0;2;6}
=> n thuộc {0;1;3}
Nhấn đúng cho mk nha!!!!!!!!!!
4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
Vì 4n-2 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)
2n-1 | n |
1 | 1 |
-1 | 0 |
5 | 3 |
-5 | -2 |
KL: n thuộc............................
1.chứng minh rằng : 1^3+2^3+3^3+...+n^3 chia hết 1+2+3+...+n
2.tìm x , 1/3+1/6+...+2/x(x+1)=2005/2007
Cái bài 2 nhân với 1 là 2/2 nên nhân cả tử cả mẫu với 2 ra 6=2*3
12=3*4
.........
Còn lại tự tính
Nếu ra kết quả đúng thì cho **** nhé
n là số 1 vì nếu n là các số khác ví như 5-1=4 rồi 4:5 thì không được.Còn 1 thì 1-1=0 rồi 0:1=0 thì đúng.
Mong bạn học tốt. Nhớ k mik nha!
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5.
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích nha
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích mình đi
n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)
\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n
+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )
+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )
+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )
Vậy n là tất cả các số tự nhiên chia 3 dư 1.
Đỗ Đức Lợi làm thiếu rồi :))
\(A=2005^n+n^{2005}+2005.n⋮3\)
Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1
=>2005n=3k+1(k\(\in N\))
Xét +) n=3k ta có A =2005n+n2005.n
A=(3k+1+3k+3k):3 dư 1
=> loại n=3k
+)n=3k+1 ta có A=3k+1+3k+1+3k+1
A=9k+3
A=3(k+1) \(⋮\)3
+)n=3 k+2 Ta có :
A=3k+1+3k+2+3k+2
A=9k +5 :3 dư 2
=>n=3k+2 ( loại )
Với n=3k+1 thì A=3(k+1) chia hết cho 3