\(2005^n+n^{200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)

\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n

+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )

+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )

+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )

Vậy n là tất cả các số tự nhiên chia 3 dư 1.

Đỗ Đức Lợi làm thiếu rồi :))

\(A=2005^n+n^{2005}+2005.n⋮3\)

Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1

=>2005n=3k+1(k\(\in N\))

Xét +) n=3k ta có A =2005n+n2005.n

A=(3k+1+3k+3k):3 dư 1 

=> loại n=3k

+)n=3k+1 ta có A=3k+1+3k+1+3k+1

A=9k+3

A=3(k+1) \(⋮\)3

+)n=3 k+2 Ta có :

A=3k+1+3k+2+3k+2

A=9k +5 :3 dư 2

=>n=3k+2 ( loại )

Với n=3k+1 thì A=3(k+1) chia hết cho 3

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101 

26 tháng 1 2016

Ta có : \(A=3+3^2+3^3+...+3^{2009}\)

=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)

=> \(2A=3^{2010}-3\)

=> \(2A+3=3^{2010}-3+3\)

=> \(2A+3=3^n=3^{2010}\)

=>  \(n=2010\)

26 tháng 1 2016

biết đáp án rồi

 

8 tháng 11 2018

\(Tacó\)

\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)

\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)

b, \(K=\frac{2}{3+4n}\)

\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)

11 tháng 2 2019

a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)

\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)

\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)

\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)

11 tháng 2 2019

b,\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)

\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)

\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)

\(=3^n\cdot9+1-2^n\cdot4+1\)

\(=3^n\cdot10-2^n\cdot5\)

Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)

\(3^n\cdot10⋮10\)

Vậy : ....

29 tháng 3 2019

Do n là số nguyên dương nên n có 3 dạng \(3k;3k+1;3k+2\)  với \(k\inℕ^∗\)

Với n=3k Ta có:\(2^n-1=2^{3k}-1=8^k-1^k⋮7\)

Với n=3k+1 ta có:\(2^n-1=2^{3k+1}-1=2\cdot2^{3k}-1=2\cdot8^k-1=2\left(8^k-1\right)+1\) chia 7 dư 1.

Với n=3k+2,ta có:\(2^n-1=2^{3k+2}-1=4\cdot2^{3k}-1=4\cdot8^k-1=4\left(8^k-1\right)+3\) chia 7 dư 3.

Vậy n=3k thì 2n-1 chia hết cho 7.

$$$$Chứng minh 8k-1 chia hết cho 7.(Quy nạp)

Với k=1 ta có 7 chia hết cho 7.(TM)

Giả sử bài toán đúng với k=p khi đó:

\(A_p=8^p+1\) ta cần chứng minh bài toán đúng với n=p+1 tức là \(A_{p+1}=8^{k+1}+1\).Thật vậy!

Ta có:\(A_{p+1}=8^{k+1}-1=8\cdot8^k-1=8\left(8^k-1\right)+7=8\cdot A_k+7⋮7\)

\(\Rightarrow A_{p+1}⋮7\Rightarrowđpcm\)

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!