Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
a,b cậu tự làm nha !
c) 6n + 30 chia hết cho n + 1
6n + 6 + 24 chia hết cho n + 1
6(n + 1) + 24 chia hết cho n + 1
=> 24 chia hết cho n + 1
=> n + 1 thuộc Ư(24) = {1; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24}
Xét 4 trường hopjc rồi tìm n nha
d) giống c
g) n2+ n + 5 chia hết cho n - 1
n2 - n + 2n + 5 chia hết cho n -1
n(n - 1) + 2n + 5 chia hết cho n - 1
=> 2n + 5 chia hết cho n - 1
=> 2n - 2 + 7 chia hết cho n -1
=> 2(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {1 ; 7}
còn lại giống bài c
h) n2 + 10 chia hết cho n + 1
n2 + n - n + 10 chia hết cho n + 1
n(n + 1) - n + 10 chia hết cho n +1
=> (-n) + 10 chai hết cho n + 1
=> (-n) - 1 + 11 chia hết cho n + 1
=> -(n + 1) + 11 chia hết cho n + 1
=> -11 chia hết cho n + 1
=> n + 1 thuộc Ư(-11) = {1 ; -1 ; 11 ; -11}
Còn lại giống bài c
Cậu áp dụng công thức này nè :
a chia hết cho m
b chia hết cho m
=> a + b hoặc a - b chia hết cho m
Và a chia hết cho m
=> a.n chia hết cho m
Nha!
3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)
3n+24 chia het cho n-4
5n-7 chia het co n+2
n^2+5 chia het cho n+1
Giup mk voi nha.thank you very much!
b,5n-7 chia hết cho n+2
=>5n+10-17 chia hết cho n+2
=>5(n+2)-17 chia hết cho n+2
Mà 5(n+2) chia hết cho n+2
=>17 chia hết cho n+2
=>n+2\(\in\)Ư(17)={-17,-1,1,17}
=>n\(\in\){-19,-3,-1,15}
c,n2+5 chia hết cho n+1
=>n2-12+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
=>n+1\(\in\)Ư(6)={-6,-3,-2,-1,1,2,3,6}
=>n\(\in\){-7,-4,-3,-2,0,1,2,5}
a, 3.(n-4) + 36 chia hết n-4
suy ra 36 chia hết n-4
n-4 là ước của 36
tự giải tiếp
b, = 5.(n+2) - 13 chia hết n+2
suy ra -13 chia hết n+2
tự giải tiếp
c, = n.(n+1) - (n+1) +6 chia hết n+1
suy ra 6 chia hết n+1
tự giải tiếp
nha
a) \(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
(2n-1) la uoc cua 3
U(3)=(1,3)
n=[U(3)+1]/2=(1,2)
n+11 chia het n+1
n+11=(n+1)+10
=> \(\frac{n+11}{n+1}=1+\frac{10}{\left(n+1\right)}\)
vay n+1 phai la uoc cua 10
U(10)=(1,2,5,10)
n=(0,1,4,9)
c)
\(\frac{7n}{n-3}=\frac{7.\left(n-3\right)+21}{n-3}=7+\frac{21}{\left(n-3\right)}\)
vay: n-3 phai la uoc cua (21)
U(21=1,3,7,21)
n=(4,6,10,24)
a) \(\dfrac{n+5}{n+2}=\dfrac{n+2+3}{n+2}=\dfrac{n+2}{n+2}+\dfrac{3}{n+2}=1+\dfrac{3}{n+2}\)
=> n+2\(\in\)Ư(3) = {-1,-3,1,3}
Ta có bảng
Vậy n = {-5,-3,-1,1}
b) \(\dfrac{n+5}{n-2}=\dfrac{n-2+7}{n-2}=\dfrac{n-2}{n-2}+\dfrac{7}{n-2}=1+\dfrac{7}{n-2}\)
=> n-2 \(\in\) Ư(7) = {-1,-7,1,7}
Ta có bảng :
Vậy n = {-5,1,3,9}
a,
\(n+5=n+2+3\)
\(n+2⋮n+2\)
Để \(n+5⋮n+2\) thì \(3⋮n+2\)
\(\Rightarrow n+2\inƯ\left(3\right)\\ n+2\in\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
b,
\(n+5=n-2+7\)
\(n-2⋮n-2\)
Để \(n+5⋮n-2\) thì \(7⋮n-2\)
\(\Rightarrow n-2\inƯ\left(7\right)\\ n-2\in\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-5;1;3;9\right\}\)
Vậy \(n\in\left\{-5;1;3;9\right\}\)