Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n tn nên ta xet cac TH
+, n=1 ta có 1!=1la scp( chọn)
+,n=2 ta có1!+ 2!=3ko là scp(loại)
+,n=3 ta có1!+2! 3!=9 là scp( chọn)
+,n=4 ta có 1!+2!+3!+4!=33ko là scp( loai)
+, n>=5 ta có1!+2!+3!+4!+5!+...+n!
mà n>=5 nên 5!,6!,7!,...,n! có tc là 0
1!+2!+3!+4! có tận cùg là 3
nên 1!+2!+3!+...+n! có tc là 3
mà 1scp ko có tc là 3
=> n>=5 ko tm
vậy n=1.3
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Nguồn: yahoo
Thử với n=1; 2; 3; 4 ta chọn n = 1; 3
Với n > 4 => 1! + 2! + 3! + 1! + 2! + 3!+ ... +n! = 1! + 2! + 3! + 4! + 5!+ ... + n! = 33 + A0¯1! + 2! + 3!+ ... + n! = 1! + 2! + 3! + 4! + 5! +... + n! = 33 + A0¯(vì 5!; 6!; ... có tận cùng là 0) hay tổng này có tận cùng là 3 => Tổng này không phải là số chính phương vì không có số chính phương nào có tận cùng là 3 => lọai
Vậy n = 1; 3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
trên yahoo mình copy ra nè
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.