Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
\(n^3-4n^2+5n-1=\left(n-3\right)\left(n^2-n+2\right)+5.\)
\(\frac{n^3-4n^2+5n-1}{n-3}=n^2-n+2+\frac{5}{n-3}\)
Để \(n^3-4n^2+5n-1⋮n-3\Rightarrow5⋮n-3\)
\(\Rightarrow n-3=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-2;2;4;8\right\}\)
Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)
(1) \(\Leftrightarrow4n+4=4k^2\) (3)
Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)
Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có
\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)
Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)
Để biểu thức là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó
Tức là chỉ chia hết cho n-1 hoặc (n2−3n+1)(n2−3n+1) hoặc(n−1)(n2−3n+1)(n−1)(n2−3n+1)
Suy ra: n - 1 = 1 hoặc n2−3n+1=1n2−3n+1=1
=> n=2 hoặc n=0 hoặc n = 3
Trong 3 kết quả ta chỉ nhận n =3. Khi đó biểu thức có giá trị là 2 (số nguyên tố)
Đáp số n = 3
\(n^3-4n^2+4n-1=n^3-1-4n^2-4n=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-3n+1\right)\)
Để \(\left(n-1\right)\left(n^2-3n+1\right)\) là số nguyên tố <=> \(n-1=0\) hoặc \(n^2-3n+1=0\)
\(\Rightarrow n=1\)
Vậy \(n=1\) thì \(n^3-4n^2+4n-1\)là số nguyên tố
để \(4n^2+1\)lm sao bạn?
Là số nguyên tố nhé