Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n+4⋮n+2\)
\(\Rightarrow n+2+2⋮n+2\)
\(n+2⋮n+2\)
\(\Rightarrow2⋮n+2\)
\(\Rightarrow n+2\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0\right\}\) mà n thuộc N
=> n = 0
d, \(2n+6⋮n+3\)
\(\Rightarrow2\left(n+3\right)⋮n+3\)
\(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\)
\(\Rightarrow\) n = bao nhiêu cx đc miễn là n thuộc N
a) 6 + n chia hết cho 3
áp dụng tính chất chia hết của 1 tổng
=> n chia hết cho 3
=> n thuộc B(3) = { 0; 3; 6; 9 ; 12 ; .... }
b) Nhắn tin r
c) n + 5 = ( n + 2 ) + 3
=> ( n + 2 ) + 3 chia hết cho ( n + 2 )
áp dụng tính chất chia hết của một tổng
=> 3 chia hết cho n + 2
=> n + 2 thuộc Ư(3) = { 1; 3 }
=> n = { -1 ; 1 }
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
a) => n-1+3 chia hết n-1
Mà n-1 chia hết n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ước của 3
........
b)=> 2(n+1) +5 chia hết n+1
mà 2(n+1) chia hết n+1
=> 5 chia hết cho n+1
=> n+1 thuộc ước của 5
.......
a,Ta có :\(n+2⋮n-1\)
\(=>n-1+3⋮n-1\)
Do \(n-1⋮n-1\)
\(=>3⋮n-1\)
\(=>n-1\inƯ\left(3\right)\)
\(=>n-1\in\left\{-3;-1;1;3\right\}\)
\(=>n\in\left\{-2;0;2;4\right\}\)
b,\(2n+7⋮n+1\)
\(=>2.\left(n+1\right)+5⋮n+1\)
Do \(2.\left(n+1\right)⋮n+1\)
\(=>5⋮n+1\)
\(=>n+1\inƯ\left(5\right)\)
\(=>n+1\in\left\{-5;-1;1;5\right\}\)
\(=>n\in\left\{-6;-2;0;4\right\}\)
mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu
a) n - 2 \(\in\)Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Sau đó b thay số vào n - 2 = .. để tìm n nha :)
b) (n + 2) \(⋮\)(n - 3)
=> (n-3+5) \(⋮\)(n-3)
Mà (n-3) \(⋮\)(n-3)
=> (n-3) \(\in\)Ư(5) = {-1;1;5;-5}
Rồi cũng thay số như câu a
=>n-2 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
rồi lập bản thử từng TH nhé
\(a,\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
Để \(n+5⋮n+2\) thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng ( tự xét nha )
KL..
\(b,\frac{2n+3}{n-2}=\frac{2\left(n-2\right)+7}{n-2}=2+\frac{7}{n-2}\)
Giải các ý khác tương tự như trên
Ta có n+5=n+2+3
Để n+5 chia hết cho n+2 thì n+2+3 chia hết cho n+2
Mà n thuộc n => n+2 thuộc N
=> n+2 thuộc Ư (5)={1;5}
Nếu n+2=1 => n=-1 (ktm)
Nếu n+1=5 => n=4(tm)
Vậy n=4 thì n+5 chia hết cho n+2
b) Ta có 2n+3=2(n-2)+7
Để 2n+3 chia hết cho n-2 thì 2(n-2)+7 chia hết cho n-1
n thuộc N => n-1 thuộc N
=> n-1 thuộc Ư (7)={1;7}
Nếu n-1=1 => n=2(tm)
Nếu n-1=7 => n=8 (tm)