Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Phần đầu sai vì a với n chẳng liên quan đến nhau gì cả tran thi minh thuy ạ
a)Ta có: 16-3n chia hết cho n+4
=>-(16-3n) chia hết cho n+4
=>3n-16 chia hết cho n+4
=>(3n+12)-12-16 chia hết cho n+4
=>3(n+4)-28 chia hết cho n+4
Mà 3(n+4) chia hết cho n+4
=>28 chia hết cho n+4
=>n+4 thuộc Ư(28)={1;2;4;7;14;28}
=>n thuộc {-3;-2;0;3;10;24}
Mà n là STN
=>n thuộc {0;3;10;24}
b)Ta có: 5n+2 chia hết cho 9-2n
=>5n+2 chia hết cho -(9-2n)
=>(4n-18)+n+2+18 chia hết cho 2n-9
=>2(2n-9)+n+20 chia hết cho 2n-9
Mà 2(2n-9) chia hết cho 2n-9
=>(n+20) chia hết cho 2n-9
=>2(n+20)-(2n-9) chia hết cho 2n-9
=>49 chia hết cho 2n-9
=>2n-9 thuộc {1;7;49}
=>2n thuộc {10;16;58}
=>n thuộc {5;8;29}
1. a) \(\left(n+15\right)⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-\left(n+2\right)\right]⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-n-2\right]⋮\left(n+2\right)\)
\(\Rightarrow13⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ_{\left(13\right)}=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)
b) \(\left(3n+17\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮3\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮\left(3n+3\right)\)
\(\Rightarrow\left[\left(3n+17\right)-\left(3n+3\right)\right]⋮\left(n+1\right)\)
\(\Rightarrow\left[3n+17-3n-3\right]⋮\left(n+1\right)\)
\(\Rightarrow14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ_{\left(14\right)}=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
nếu n là số có 1 chữ số:
-n có thể là 0
Vì 0+9=9 0+3=3
mà 9 chia hết cho3
-n có thể là 3
Vì 3+9=12 3+3=6
mà 12 chia hết cho 6
vậy n có thể là 0 hoặc 3
tick mình nha !
Do n chia hết cho 9; a + 1 chia hết cho 25
=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25
=. n - 99 chia hết cho 9; n - 99 chia hết cho 25
=> \(n-99\in BC\left(9;25\right)\)
Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225
=> n = 225 + 99 = 324
Vậy n = 324
Do n chia hết cho 9; a + 1 chia hết cho 25
=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25
=. n - 99 chia hết cho 9; n - 99 chia hết cho 25
=> $n-99\in BC\left(9;25\right)$n−99∈BC(9;25)
Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225
=> n = 225 + 99 = 324
Vậy n = 324
a) \(2n+7⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+6⋮2n+1\)
\(\Rightarrow6⋮2n+1\)(vì \(2n+1⋮2n+1\))
\(\Rightarrow2n+1\inƯ\left(6\right)\)
\(\Rightarrow2n+1\in\left\{1;2;3;6\right\}\)
\(\Rightarrow\)\(2n\in\left\{0;1;2;5\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b) \(3m-9⋮3m-1\)
\(\Rightarrow\left(3m-1\right)-8⋮3m-1\)
\(\Rightarrow8⋮3m-1\)(vì \(3m-1⋮3m-1\))
\(\Rightarrow3m-1\inƯ\left(8\right)\)
\(\Rightarrow3m-1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow3m\in\left\{2;3;5;9\right\}\)
\(\Rightarrow m\in\left\{1;3\right\}\)
Hok "tuốt" nha^^
=> 7 chia hết cho n+2 <=> n+2 thuộc Ư(7)={cộng trừ 1 và cộng trừ 7} từ đó tính đc n nha
còn cách đơn giản hơn nha!