Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Giai\)
\(Goi:d=\left(n+1,n-3\right).\)
\(taco:\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n-3\right)⋮d\Leftrightarrow4⋮d\Rightarrow d\in\left\{1;2;4\right\}\)
\(\left(n+1,n-3\right)=1\Leftrightarrow d=1\Leftrightarrow\orbr{\begin{cases}n+1=2k+1\left(k\inℕ\right)\\n-3=2k+1\left(k\inℕ\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2k\\n=2k+4\end{cases}}}\left(n,chẵn\right)\)
\(Vậy:với,n,chẵn,thì,:\left(n+1,n-3\right)=1\)
CÂU 2:
n.n + 3 chia hết cho n+2
=>n.n+2n-2n+3 chia hết cho n+2
=>n(n+2)-2n+3 chia hếtcho n+2
Do n(n+2) chia hết cho n+2 suy ra 2n+3 chia hết cho n+2
=>2n+4-1 chia hết cho n+2
=>2(n+2)- 1 chia hết cho n+2
do 2(n+2) chia hết cho n+2 suy ra 1 chia hết cho n+2 .
n thuộc rỗng . Nếu n thuộc Z thì mới tìm được n
- nếu n = 1 thì Q=1(chọn)
- nếu n=2 thì Q=3(loai)
- nếu n=3 thì Q=9=32(chọn)
- nếu n =4 thì Q= 33(loại)
- nếu n lớn hơn hoặc bằng 5 thì Q=1!+2!+3!+4!+...+n!
Q=33+5!+...+n!
các số kể từ 5! trở đi trong tích đều chứa cặp thừa số 2 và 5 nên mỗi giai thừa có chữ số tận cùng là 0
=> 33+...0=...3
số chính phương không có tận cùng 3 nên Q không phải số chính phương
=> a lớn hơn hoặc bằng 5 bị loại
vậy n = 1 hoặc 3