K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Đặt A = ( 2 . 22 ) + ( 3 . 2) + ( 4 . 4) + ............ + ( n . 2

A = ( 2 . 2) + ( 3 . 2) + [ 4(22)4 ] + ........... + ( n . 2)

A = ( 2 . 2) + ( 3 . 2) + [ 4(2) ] + .............. + ( n . 2)

2A = ( 2 . 2) + ( 3 . 2) + ( 4 . 2) + ........... + ( n . 2n+1 )

Sau đó bạn làm theo đây: Câu hỏi của Thái Hoàng Thục Anh  

3 tháng 1 2018

\(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=-2.2^2-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}\)
\(B=2^3+2^4+...+2^n \)
\(2B-B=2^{n+1}-2^3\)
\(\Rightarrow A=-2.2^2+2^3-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
\(\Rightarrow\left(n-1\right).2^{n+1}=2^n+11\)
Do \(\left(n-1\right).2^{n+1}\) luôn là số chẵn, \(2^n+11\) luôn là số lẻ nên không có n thỏa mãn

DD
6 tháng 3 2021

\(A=2.2^2+3.2^3+...+n.2^n\)

\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)

\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)

\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)

\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)

Từ đây phương trình ban đầu tương đương với: 

\(\left(2n-2\right).2^n=2^{n+34}\)

\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)

\(\Leftrightarrow n-1=2^{33}\)

\(\Leftrightarrow n=2^{33}+1\)

6 tháng 12 2016

bai2

UCLN (n,n+2)=d

=>(n+2)-n chia hết cho d

2 chia het cho d

vay d thuoc uoc cua 2={1,2} 

nếu n chia hết cho 2  uoc chung lon nhta (n,n+2) la 2

neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau

BCNN =n.(n+2) neu n le

BCNN=n.(n+2)/2

31 tháng 8 2017

A={ 2;4;6;8;12;14;16;....;2016 }

1 tháng 9 2017

hi hi cho mình xin lỗi nhé tính tổng các phần tử cua A cơ 

13 tháng 4 2017

n khác 2k -1