Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n=3k, n=3k+1, n=3k+2 ta có trường hợp đầu có số dư hai trường hợp sao dư bằng 0 nên n là số tự nhiên chia hết cho 3
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=n^2+n^2+2n+1+n^2+4n+4+n^2+6n+9\)
\(=4n^2+12n+14=\left(2n\right)^2+2\cdot2n\cdot3+3^2+5=\left(2n+3\right)^2+5\)
vì \(5⋮5\)để \(A⋮5\Rightarrow\left(2n+3\right)^2⋮5\Rightarrow2n+3⋮5\Rightarrow2n-2+5⋮5\Rightarrow2n-2⋮5\Rightarrow2\left(n-1\right)⋮5\Rightarrow n-1⋮5\)
vì 1 chia 5 dư 1 để n-1 chia hết cho 1 suy ra n chia cho 5 phải dư 1
\(\Rightarrow n=\left(6;11;16;...;5n+1\right)\)
vậy \(n=\left(6;11;16;...;5n+1\right)\)thì \(A⋮5\)
Để 2^n chia hết cho 3
suy ra 2^n thuộc BC<3>
Ta có 3=3
suy ra:BCNN<3>=3
suy ra:BC<3>=B<3>={0;3;6;9;12;15;18;21;...}
Mà 2^n thuộc BC<3>
suy ra:n thuộc tập hợp:rỗng
Vậy không có số tự nhiên n nào thỏa mãn yêu cầu đề bài