Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
olm ơi trừ điểm nguyễn văn ko bít đi ạ bn ấy trả lời chtt
Xét 2n-3=0 thì 22n-3=1(loại)
Xét 2n-3=1 thì 22n-3=2(thỏa mãn)
Xét 2n-3>1 thì 22n-3 là số chẵn mà số chắn duy nhất là số nguyên tố là 2
Vậy 2n-3=1.Suy ra:n=2
Bài giải
Ta có :
\(E=2^{4^{2n}}+29\)
\(^{\text{ * }}\text{ Với }n=0\text{ thì }2^{4^{2n}}=2^{4^0}=2^1=2\text{ là số nguyên tố}\)
\(^{\text{ * }}\text{ Với }n>0\text{ thì }2^{4^{2n}}\text{ là số chẵn }\text{ }\left(2^{4^{2n}}>0\right)\)
Vậy để E là số nguyên tố thì n = 0
Bài giải
Ta có :
\(E=2^{4^{2n}}+29\)
\(^{\text{ * }}\text{ Với }n=0\text{ thì }2^{4^{2n}}=2^{4^0}=2^1=2\text{ là số nguyên tố}\)
\(^{\text{ * }}\text{ Với }n>0\text{ thì }2^{4^{2n}}\text{ là số chẵn }\text{ }\left(2^{4^{2n}}>0\right)\)
Vậy để E là số nguyên tố thì n = 0