Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)
Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)
Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)
b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)
Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)
\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)
c) Ta thấy:
\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)
Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
2/
Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)
\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)
\(\Rightarrow m^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)
Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)
\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)
Vậy n = 1002
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ