Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
Giải:
a) Ta có: n và 3.n có tổng chữ số như nhau
Mà \(3.n⋮3\)
\(\Rightarrow3.n\) có tổng các chữ số ⋮ 3
\(\Rightarrow n\) có tổng các chữ số ⋮ 3 (Vì tổng chữ số của n = tổng các chữ số của 3.n)
\(\Rightarrow3.n\) ⋮ 9 (n có tổng các chữ số ⋮ 3)
\(\Rightarrow n\) có tổng các chữ số ⋮ 9
\(\Rightarrow n⋮9\)
\(147⋮3\Rightarrow n⋮3\)
Mà n chính phương \(\Rightarrow n⋮9\)
\(\Rightarrow n⋮441\)
\(\Rightarrow n=441.k^2\)
Do n có 4 chữ số \(\Rightarrow1000\le n\le9999\)
\(\Rightarrow1000\le441.k^2\le9999\)
\(\Rightarrow1< k< 5\) \(\Rightarrow k=\left\{2;3;4\right\}\)
\(\Rightarrow n=\left\{1764;3969;7056\right\}\)
a/ Với n=0 ta có 2.1+1=3 chia hết cho 3
Giả sử \(2.7^n+1\) đúng với n=k => \(2.7^k+1\) chia hết cho 3
Ta cần chứng minh \(2.7^{k+1}+1\) cũng chia hết cho 3
Thật vậy ta có
\(2.7^{k+1}+1=2.7.7^k+7-6=7\left(2.7^k+1\right)-6\)
Ta thấy \(2.7^k+1\) chia hết cho 3 và 6 chia hết cho 3 nên \(2.7^{k+1}+1\) chia hết cho 3
Kết luận: Với mọi số tự nhiên n ta có 2.7^n+1 chia hết cho 3
b/
Bạn vào phần câu hỏi tương tự nhé
Có đó
chúc bạn học tốt
thành công trong học tập