\(\in\)N biết giữa n và 2n chứa 100 số tự nhiên lẻ.

các bn giúp mình nhé

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

2n luôn là số chẵn.

Giả sử n là số chẵn thì 100 số tự nhiên lẻ giữa n và 2n là : n + 1, n+ 3, ..., 2n - 1

Đây là dãy số tự nhiên cách đều 2 đơn vị.

Số số hạng tính theo công thức là : \(\frac{\text{ }\left[2n-1-\left(n+1\right)\right]}{2}+1=\frac{2n-1-n-1}{2}+1=\frac{n-2}{2}+1=\frac{n-2+2}{2}=\frac{n}{2}\)

Vậy thì \(\frac{n}{2}=100\Rightarrow n=200.\)

Giả sử n là số lẻ thì 100 số tự nhiên lẻ giữa n và 2n là : n + 2, n+ 4, ..., 2n - 1

Đây là dãy số tự nhiên cách đều 2 đơn vị.

Số số hạng tính theo công thức là : \(\frac{\text{ [2n - 1 - (n + 2)]}}{2}+1=\frac{2n-1-n-2}{2}+1=\frac{n-3}{2}+1=\frac{n-3+2}{2}=\frac{n-1}{2}\)

Vậy thì \(\frac{n-1}{2}=100\Rightarrow n=201.\)

Vậy có 2 số thỏa mãn là n = 200 hoặc n = 201. 

17 tháng 2 2016

suy ra n+10 chia hết cho 2n-8

2.(n+10) chia hết cho 2n-8

2n+20 chia hết cho2n-8

(2n-8)+28 chia hết cho 2n-8

28 chia hết cho 2n-8

2n-8 thuộc ư(28)

17 tháng 2 2016

Ta có:

n+10 chia hết cho 2n-8

=> n+10 chia hết cho n-4

=> n-4+14 chia hết cho n-4

=> 14 chia hết cho n-4

Dó đó n-4 là ước của 14. Cá ước của 14 là: 1;-1;2;-2;7;-7;14;-14

Ta có nhận xét n-4 >= -4 (vì n là số tự nhiên) nên n-4 chỉ nhận các giá trị : 1;-1;2;-2;7;14. Ta có:

* Với n-4 = 1 => n = 5

* Với n-4= -1 => n = 3

* Với n-4 = 2 => n = 6

* Với n-4= -2 => n = 2

* Với n-4 = 7 => n = 11

* Với n-4 = 14 => n = 18

Vậy n thuộc {2;3;5;6;11;18}

21 tháng 11 2018

n=0 hoặc 2

      Vì 0 + 1 = 1

           2 + 1 = 3

      Và 3 thì chia hết cho 1; 3

21 tháng 11 2018

Tìm số tự nhiên n biết 3 \(⋮n+1\)?

Giải : Vì n + 1 chia hết cho 3 nên n + 1 là ước của 3 => Ư\((3)\)= { 1;3}

Do n + 1 => n \(\in\left\{0;2\right\}\)

Thử lại : 3 chia hết cho 0 + 1 => 3 chia hết cho 1

             3 chia hết cho 2 + 1 => 3 chia hết cho 3

Chúc bạn học tốt :>

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa

22 tháng 10 2018

x va y bang 0 hoac bang 2 vi 0x0=0+0     2x2=2+2

18 tháng 10 2016

a) bn tự lm

b) n + 2 chia hết cho n2 + 1

=> n.(n + 2) chia hết cho n2 + 1

=> n2 + 2n chia hết cho n2 + 1

=> n2 + 1 + 2n - 1 chia hết cho n2 + 1

Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)

Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)

=> 2.(n + 2) chia hết cho n2 + 1

=> 2n + 4 chia hết cho n2 + 1 (2)

Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1

=> 2n + 4 - 2n + 1 chia hết cho n2 + 1

=> 5 chia hết cho n2 + 1

Mà \(n\in N\) nên \(n^2+1\ge1\)

\(\Rightarrow n^2+1\in\left\{1;5\right\}\)

\(\Rightarrow n^2\in\left\{0;4\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Thử lại ta thấy trường hợp n = 2 không thỏa mãn

Vậy n = 0

c) bn tự lm

18 tháng 10 2016

đon giản wá

14 tháng 3 2016

Umk , cảm ơn. Bạn giúp mình với nhé.