Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)(n\(\in\)N)
\(2^n.2^n.\left(\frac{2}{3}\right)^n.\left(3^2\right)^n=82944\)
\(\left(2.2.\frac{2}{3}.9\right)^n=82944\)
\(24^n=82944\)
Tớ làm đến đây thôi khó lắm bạn xem lại đề đi
\(2^2\cdot3^{2n}\cdot\left(\frac{2}{3}\right)^n\cdot2^n=82944\)
\(2^2\cdot\left(3^2\right)^n\cdot\left(\frac{2^n}{3^n}\right)\cdot2^n=82944\)
\(2^2\cdot9^n\cdot\frac{2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{9^n\cdot2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{18^n}{3^n}\cdot2^n=82944\)
\(4\cdot6^n\cdot2^n=82944\)
\(6^n\cdot2^n=82944:4\)
\(12^n=20736\)
\(12^n=12^4\)
Vậy n=4
Số tự nhiên n thỏa mãn:22.32n.\(\left(\frac{2}{3}\right)^n\).2n=82944 là..............(kết quả thôi)
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
\(2^2.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)
\(2^2.9^n.\left(\frac{2}{3}\right)^n.2^n=2^{10}.3^4\)
\(2^2.2^n.\left(\frac{2}{3}.9\right)^n=2^{10}.3^4\)
\(2^{n+2}.6^n=2^{10}.3^4\)
\(2^{n+2}.2^n.3^n=2^{10}.3^4\)
\(2^{2n+2}.3^n=2^{10}.3^4\)
Vậy n = 4