K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

∙∙ n=1n=1 ta thấy thõa mãn

Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1

Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)

Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1

Vậy n1988+n1987+1n1988+n1987+1 là hợp số

ủng hộ nhá

24 tháng 6 2016

 n=1 ta thấy thõa mãn

Nếu n≥2 thì n1998+n1987+1>n2+n+1

Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)

Nên n2+n+1|n1988+n1987+1

Vậy n1988+n1987+1 là hợp số

6 tháng 11 2019

Tôi vẫn chưa nghĩ ra và cũng đang dặt câu hỏi đây

10 tháng 2 2019

Ta có A=(n−1)(n2−3n+1). Với n = 0, 1, 2 thì A không phải là số nguyên tố. Với n = 3 thì A = 2 là số nguyên tố.

Với n>3⇒n2−3n+1=n(n−3)+1>1 và n - 1 > 2 nên A là hợp số. Vậy n = 3 thỏa mãn bài toán

Bạn kham khảo nhé.

10 tháng 2 2019

a có: A=n3−4n2+4n−1=(n-1)(n^2+n+1)-4n(n-1) =(n-1)(n^2-3n+1)$

Đến đây giải từng số bằng 1, số còn lại là SNT, rồi kết luận.

Bạn kham khảo nhé.

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

22 tháng 7 2016

a) Cần chứng minh : \(a^4-1\)chia hết cho 5 với mọi a là số tự nhiên.

Thật vậy : Với mọi số tự nhiên a không chia hết cho 5, sẽ có một trong các dạng : \(a=5k\pm1,a=5k\pm2\)(k thuộc N)

\(a^2\)có một trong hai dạng \(5k+1\)hoặc \(5k+4\)

\(a^4\)có một dạng duy nhất là \(5k+1\). Vậy \(a^4-1⋮5\)với mọi a là số tự nhiên.

Ta biểu diễn : \(A=\left(n^4-1\right)+5\) . Nhận thấy n4-1 chia hết cho 5 , 5 chia hết cho 5 => A chia hết cho 5. Mà A là số nguyên tố, vậy A = 5. Suy ra được n = 1

b) Với n = 1 , dễ thấy B = 5 là số nguyên tố

Với n = 2 , B = 32 không là số nguyên tố.

Với n = 3 , B = 145 không là số nguyên tố

Xét với n là số nguyên tố, n > 3, biểu diễn B dưới dạng : \(B=\left(n^4-1\right)+\left(4^n+1\right)\)

Dễ thấy n4-1 chia hết cho 5 , \(4^n+1=4^n+1^n=\left(4+1\right).M=5M⋮5\)

Suy ra B chia hết cho 5. Mà B là số nguyên tố, vậy B = 5. Vậy n = 1 thỏa mãn đề bài