Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)
Để \(n+8⋮n\) thì \(8⋮n\)
\(\Rightarrow n\in\left\{1;2;4;8\right\}\)
Vậy.....
b.c tương tự
Bài 2:
a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)
Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)
b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)
Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)
n + 11 chia hết cho 5 + n
n + 5 + 6 chia hết cho 5 + n
5 + n thuộc U(6) = {-6;-3;-2;-1;1;2;3;6}
Mà n là số TN
Vậy n = 1
Tương tự
a) ta có: n+4⋮n
Mà n⋮n => 4⋮n hay n \(\in\)Ư(4)={-1;-2;-4;1;2;4}
Vậy để n+4⋮n thì n\(\in\){-1;-2;-4;1;2;4}
b)ta có: 3n+7⋮n
Mà 3n⋮n => 7⋮n hay n \(\in\)Ư(7)={-1;-7;1;7}
Vậy để 3n+7⋮n thì n\(\in\){-1;-7;1;7}
c) ta có: 27-5n⋮n
Mà 5n⋮n => 27⋮n hay n \(\in\)Ư(27)={-1;-27;1;27}
Vậy để n+4⋮n thì n\(\in\){-1;-27;1;27}
27 - 5n chia hết cho n
Vì 5n chia hết cho n
=> 27 chia hết cho n
=> n thuộc Ư(27)
=> n \(\in\){1; -1; 3; -3; 9; -9; 27; -27}
Ta có: n + 4 chai hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
=> Ư(4) = {1;2;4}
Ta có: 3n + 7 chia hết cho n
Mà 3n chia hết cho n => 7 chia hết cho n
=> n thuộc Ư(7)
=> Ư(7) = {1;7}
Ta có: 27 - 5n chia hết cho n
=> 27 chia hetes cho n
=> n thuộc Ư(27)
=> n = {1;3;9;27}
a) Ta có: \(\frac{n+4}{n}=\frac{n}{n}+\frac{4}{n}=1+\frac{4}{n}\)
Để n+4 chia hết cho n thì 4 phải chia hết cho n
Suy ra: n thuộc Ư(4) = {-4;-2;-1;1;2;4}
Vậy:.....
b) Ta có: \(\frac{3n+7}{n}=\frac{3n}{n}+\frac{7}{n}=3+\frac{7}{n}\)
Để 3n+7 chia hết cho n thì 7 phải chia hết cho n.
Suy ra: n thuộc Ư(7) ={-7;-1;1;7}
Vậy:....
c) Ta có: \(\frac{27-5n}{n}=\frac{27}{n}-\frac{5n}{n}=\frac{27}{n}-5\)
Để 27 - 5n chia hết cho n thì 27 phải chia hết cho n.
Suy ra: n thuộc Ư(27) = {-27;-9;-3;-1;1;3;9;27}
Vậy:...
a) n+4 ⋮ n
Mà n⋮n
=>4⋮n
=> n \(\inƯ\left(4\right)=\left\{1;2;4\right\}\)
b) 3n+7⋮n
Mà 3n⋮n
=>7⋮n
=> n \(\inƯ\left(7\right)=\left\{1;7\right\}\)