Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6n+7⋮2n-1\Leftrightarrow6n-3+10=3\left(2n-1\right)+10⋮2n-1\)
Hay \(10⋮2n-1\)
Do đó 2n-1 là ước của 10
Do 2n-1 lẻ nên 2n-1 là ước lẻ của 10, do đó 2n*1 có các giá trị là 1 và 5
Từ đó tính được n=1 và n=3
\(7+6n⋮2n-1\Leftrightarrow6n-3+10⋮\left(2n-1\right)\)
\(\Leftrightarrow3.\left(2n-1\right)+10⋮\left(2n-1\right)\)
\(\Leftrightarrow10⋮\left(2n-1\right)\) ( vì \(3.\left(2n-1\right)⋮\left(2n-1\right)\) )
\(\Leftrightarrow2n-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2n-1\right):2\) dư 1 và \(n\in N\) nên \(2n-1=\pm1;5\)
Với 2n - 1 có giá trị lần lượt bằng: -1;1;5 thì n có giá trị lần lượt bằng : 0;1;3
Vậy \(n=0;1;3\)
7+6n chia hết cho 2n-1
10+6n-3 chia hết cho 2n-1
10+3(2n-1) chia hết cho 2n-1
=>10 chia hết cho 2n-1 hay 2n-1EƯ(10)={1;2;5;10}
=>2nE{2;3;6;10}
=>nE{1;3;5}
a) \(3n+19⋮n+1\)
\(\Rightarrow\)\(3\left(n+1\right)+16⋮n+1\)
mà \(3\left(n+1\right)⋮n+1\)\(\Rightarrow\)\(16⋮n+1\)
\(\Rightarrow\)\(n+1\in\left\{1,-1,2,-2,4,-4,8,-8,16,-16\right\}\)
\(\Rightarrow n\in\left\{0,-2,1,-3,3,-5,7,-9,15,-17\right\}\)
b) \(2n+7⋮n+2\)
\(\Rightarrow2\left(n+2\right)+3⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow n\in\left\{-1,1,-3,-5\right\}\)
c)\(6n+39⋮2n+1\Rightarrow3\left(2n+1\right)+36⋮2n+1\)
mà\(3\left(2n+1\right)⋮2n+1\)\(\Rightarrow36⋮2n+1\)
\(\Rightarrow2n+1\in\left\{1,-1,2,-2,3,-3,4,-4,6,-6,9,-9,12,-12,18,-18,36,-36\right\}\)
\(\Rightarrow2n\in\left\{0,-2,1,-3,2,-4,3,-5,5,-7,8,-10,11,-13,17,-19,35,-37\right\}\)
\(\Rightarrow\)\(n\in\left\{0,-1,1,-2,4,-5\right\}\)
ta có 6n+7 chia het cho 2n-1
=>6n-3+10 chia het cho 2n-1
=>3(2n-1) + 10 chia het cho 2n-1
mà 3(2n-1) chia hết cho 2n-1 nên 10 chia hết cho 2n-1
ta tim uoc cua 10 rui ban the vo nhe
tick cho mk nha
De 6n+7 chia het cho 2n-1
thi 6n+7 chia het cho 2n-1 va 2n-1 chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 3.(2n-1) chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 6n-3 chia het cho 2n-1
=> (6n+7)-(6n-3) chia het cho 2n-1
=> 6n+7-6n+3 chia het cho 2n-1
=> 10 chia het cho 2n-1
=> 2n-1 thuoc U(10)={1, -1, 2, -2, 5, -5, 10, -10}
phan con lai ban tu lam tiep nhe
Vì 6n + 7 ⋮ 2n - 1 ⇒ 2n + 2n + 2n - 1 - 1 - 1 + 10 ⋮ 2n 1
⇒ ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1
Vì 2n - 1 ⋮ 2n - 1 . Để ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1 ⇒ 10 ⋮ 2n - 1
⇒ 2n - 1 ∈ Ư ( 10 )
⇒ Ư ( 10 ) = { + 1 ; + 2 ; + 5 ; + 10 }
⇒ 2n - 1 = + 1 ; + 2 ; + 5 ; + 10
⇒ 2n = 2 ; 0 ; 3 ; - 1 ; 6 ; - 4 ; 11 ; - 9
⇒ n = 1 ; 0 ; 3 ; - 2
Vậy n = { - 2 ; 0 ; 1 ; 3 }
`7 + 6n vdots 2n -1`
`6n -3 + 10 vdots 2n-1`
`10 vdots 2n-1`
`2n-1 in Ư(10)`.
Đến đây bạn tự giải nhé