K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HC
13 tháng 12 2016
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
TD
0
TB
0
TT
0
Lời giải:
$n^3-n^2+n-1=(n^3-n^2)+(n-1)=n^2(n-1)+(n-1)=(n-1)(n^2+1)$
Để số trên là snt thì 1 trong 2 thừa số $n-1, n^2+1$ bằng $1$ và thừa số còn lại là snt.
Mà $n-1< n^2+1$ với mọi $n\in\mathbb{N}^*$
$\Rightarrow n-1=1\Rightarrow n=2$
Khi đó:
$n^3-n^2+n-1=(n-1)(n^2+1)=1(2^2+1)=5$ (tm)
Vậy.........