Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
A=TA CO 3N-5 CHI HET CHO N-3
=>3(N+1)-2 CIA HET CHO N-3
=>2 CHIA HET CHO N-3
=>ƯỚC CỦA 2 LÀ (-1,1,2,-2)
+) N-3=-1=>N=-1+3=2(TM)
+)N-3=1=>N=1+3==4(TM)
+)N-3=2=>N=2+3=5(TM)
+)N-3=-2=>N=-2+3=1(TM)
=>N(2,4,5,1)
a) 3n-5 chia hết n-3
Ta có: 3n-5=3n-9+4
=3(n-3)+4
Vì 3(n-3) chia hết cho n-3 nên suy ra 4 chia hết cho n-3
suy ra n-3 thuộc Ư(4) = { 1;2;4;-1;-2;-4 }
n thuộc { 4;5;7;2;1;-1}
b) n+1 chia hết n-5
Ta có; n+1 = n-5+6
Vì n-5 chia hết cho n-5 nên suy ra 6 chia hết cho n-5
suy ra n-5 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6 }
n thuộc { 6;7;8;11;4;3;2;-1}
k mk nha
a)
ĐKXĐ: \(n\ne1\)
Để A là số nguyên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Vậy: \(n\in\left\{2;0;8;-6\right\}\)
b) ĐKXĐ: \(n\ne-2\)
Để B là số nguyên thì \(n-3⋮n+2\)
\(\Leftrightarrow n+2-5⋮n+2\)
mà \(n+2⋮n+2\)
nên \(-5⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(-5\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{-1;-3;3;-7\right\}\)
c) ĐKXĐ: \(n\ne-1\)
Để C là số nguyên thì \(3n-1⋮2n+2\)
\(\Leftrightarrow6n-2⋮2n+2\)
\(\Leftrightarrow6n+6-8⋮2n+2\)
mà \(6n+6⋮2n+2\)
nên \(-8⋮2n+2\)
\(\Leftrightarrow2n+2\inƯ\left(-8\right)\)
\(\Leftrightarrow2n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow2n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)
\(\Leftrightarrow n\in\left\{\dfrac{-1}{2};\dfrac{-3}{2};0;-2;1;-3;3;-5\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
n2 + 3n + 5 ⁝ 3 + n
<=> n(n + 3) + 5 ⁝ 3 + n
mà n + 3 ⁝ 3 + n => n(n + 3) ⁝ 3 + n
=> để n2 + 3n + 5 ⁝ 3 + n thì 5 phải ⁝ 3 + n
=> 3 + n ∈ Ư(5) => 3 + n ∈ {-5; -1; 1; 5}
ta có bảng:
=> n ∈ {-8; -4; -2; 2}