Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).
b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).
\(minA=2-\frac{5}{2}=-0,5\).
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có: \(\frac{n-3}{n-10}=\frac{n-10+7}{n-10}=\frac{n-10}{n-10}+\frac{7}{n-10}=1+\frac{7}{n-10}\)
=> Để \(\frac{n-3}{n-10}\)nhỏ nhất thì \(\frac{7}{n-10}\)nhỏ nhất
Để \(\frac{n-3}{n-10}\in\)N thì \(\frac{7}{n-10}\ge-1\)
=> GTNN của \(\frac{7}{n-10}=-1\)
=> \(n-10=7:\left(-1\right)=-7\)
=> \(n=-7+10=3\)
Vậy n=3 để \(\frac{n-3}{n-10}\in N\)và có GTNN