K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Dễ dàng CM được: \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5\left(n-1\right)n\left(n+1\right)\)

Do đó: \(n^5-n⋮3\)(tích 3 số nguyên liên tiếp)

=> \(n^5-n+2\)chia 3 dư 2

Mà số chính phương chia 3 dư 0 hoặc 1

Vậy không tồn tại số n thả mãn

14 tháng 9 2017

Cao Chi Hieu 

Số chính phương chia cho 4 chỉ dư 0 hoặc 1, số chính phương chia 4 dư 1 là số chính phương lẻ. 
Do 2 là số chẵn => 2^n là số chắn
=> 2^n + 5 là số lẻ. 
Đặt 2^n + 5 = a² (a là số tự nhiên) => a là số lẻ ( a² chắc chắn > 2^n) 
=> a² chia 4 dư 1 => 3^n + 4 chia 4 dư 1. 
+ Với n lẻ => 2^n + 5 
= 3^n + 1 + 3 
= 3^n + 1^n + 3 
= (3 + 1)( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3 
= 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3 
= Do 4 chia hết cho 4 
=> 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) chia hết cho 4 
=> 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3 chia 4 dư 3 
=> 3^n + 4 chia 4 dư 3 
a² chia 4 dư 3 nhưng số chính phương chia cho 4 không dư 3 
=> không tồn tại số tự nhiên n lẻ để 3^n + 4 là số chính phương (*) 

+ Với n chẵn => n = 2k (k là số tự nhiên) 
=> 3^n + 4 = a² 
<=> 3^(2k) + 4 = a² 
<=> (3^k)² + 4 = a² 
<=> a² - (3^k)² = 4 
<=> (a + 3^k)(a - 3^k) = 4 
=> a + 3^k và a - 3^k là các ước tự nhiên của 4 
Ta có ước tự nhiên của 4 là các số: 1;2;4 Kết hợp với điều kiện a + 3^k > a - 3^k => ta có: 
a + 3^k = 4 (1) và a - 3^k = 1 (2) 
Cộng vế với vế của (1) và (2) ta được: (a + 3^k) + (a - 3^k) = 4 + 1 
<=> a + 3^k + a - 3^k = 5 
<=> 2a = 5 
=> a = 2,5 loại vì không thỏa mãn điều kiện a là số tự nhiên 
=> Không có giá trị n chẵn nào làm 3^n + 4 là số chính phương (*)(*) 

Từ (*) và (*)(*) => Không có giá trị nào của n để 3^n + 4 là số chính phương. 

22 tháng 8 2017

sai đề

hahaha bọn mày ơi 

vào trang chủ của : Edward Newgate đê 

hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))

10 tháng 8 2019

đặt n2 + n + 43 = a2

4n2 + 4n + 172 = 4a2

( 2n + 1 )2 + 171 = 4a2

( 2n + 1 )2 - 4a2 = - 171

( 2n + 1 - 2a ) ( 2n + 1 + 2a ) = -171

tới đây lập bảng mà làm

21 tháng 8 2022

làm cả chứ làm thế ai cũng làm đc

đm mi

22 tháng 11 2017

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé

9 tháng 10 2020

CM định lý nhỏ Fermat:

Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Ta thấy \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích 5 STN nhỏ

=> \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 5

Mà \(5n\left(n-1\right)\left(n+1\right)\) chia hết cho 5

=> \(n^5-n\) chia hết cho 5

=> \(n^5-n+2\) chia 5 dư 2, mà không tồn tại SCP nào chia 5 dư 2

=> \(n^5-n+2\) không là số chính phương với mọi số nguyên n

9 tháng 10 2020

Xét biểu thức \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)Dễ thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích của 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 5 suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮10\)(*)

\(\left(n-1\right)n\left(n+1\right)\)là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 suy ra \(5\left(n-1\right)n\left(n+1\right)⋮10\)(**)

Từ (*) và (**) suy ra \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)nên \(n^5-n\)  có tận cùng bằng 0

Do đó \(n^5-n+2\)tận cùng bằng 2 mà số chính phương không tận cùng bằng 2 nên không tồn tại n để \(n^5-n+2\)là số chính phương

3 tháng 10 2018

Tham khảo ở đây:

https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn 

\(n^2+n+6=a^2\)

\(\Rightarrow4n^2+4n+24=4a^2\)

\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

Theo (1) ta  thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)

Từ đó ta tìm được a=6a=6n=5n=5.

Vậy n=5 là giá trị cần tìm 

3 tháng 10 2018

Cộng 1 vào 2 vế ta có: 
10x2+50y2+42xy+14x−6y+58≤010x2+50y2+42xy+14x−6y+58≤0
↔(x+7)2+(y−3)2+(3x+7y)2≤0↔(x+7)2+(y−3)2+(3x+7y)2≤0
↔x=−7,y=3↔x=−7,y=3
Vậy... 

Bạn tự ghi nha

chúc hok tốt

3 tháng 10 2018

Đặt A=n2+n+6=k2A=n2+n+6=k2 (kk thuộc NN)

4n2+4n+24=4k2→4n2+4n+24=4k2

(2n+1)24k2=23→(2n+1)2−4k2=−23

(2n+14k)(2n+1+4k)=23→(2n+1−4k)(2n+1+4k)=−23

Đến đây là PT ước số.Tự giải tiếp nhé :)