Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M = n + 1 n là phân số tối giản thì ƯCLN ( n +1,n) = 1
Gọi ƯCLN ( n + 1,n) = d => n + 1 ⋮ d; n ⋮ d
=> ( n + 1) – n ⋮ d=> 1 ⋮ d=> d = 1 với mọi n. Vậy với mọi n ∈ ℤ thì M = n + 1 n là phân số tối giản.
a)Để A là phân số thì n−3≠0n−3≠0 hay n≠3
b)câu b mình ko chắc chắn lắm
n+1⋮n-3
n-3+4⋮n-3
vì n-3 ⋮ n-3
nên 4⋮n-3
⇒n-3∈Ư(4)
Ư(4)={1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 3 | 5 | 1 | 7 | -1 |
⇒n∈{4;3;5;1;7;-1}
Để M=n−1/n−2 là phân số tối giản thì ƯCLN (n – 1, n -2) = 1.
Gọi ƯCLN (n - l, n - 2) = d => n – 1 ⋮d; n – 2 ⋮d
=> ( n – 1) – ( n – 2) d => 1⋮d => d = 1 với mọi n. Vậy với mọi n ∈ℤ thì M=n−1/n−2 là phân số tối giản.
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a; A = \(\dfrac{n+1}{n}\)
ƯCLN(n + 1; n) = d
⇒ \(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
⇒ n + 1 - n ⋮ d
⇒ (n - n) + 1 ⋮ d
⇒ 1 ⋮ d
Vậy d = 1
Hay A = \(\dfrac{n+1}{n}\) là phân số tối giản với mọi n khác 0
b; B = \(\dfrac{n-1}{n-2}\) (n \(\in\) Z; n ≠ 2)
Gọi ƯCLN (n - 1; n - 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)
⇒ (n - 1 - n + 2) ⋮ d
⇒ (n - n) + (2 - 1)⋮ d
1 ⋮ d
B = \(\dfrac{n-1}{n+2}\) là phân số tối giản với mọi 2 ≠ n \(\in\) Z