K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

Để A nguyên thì 3n-5 phải chia hết cho n+4

Bạn biết làm rùi chứ?

5 tháng 2 2016

bai toan nay qua don gian

21 tháng 3 2017

Để 3n+2/n-1 có giá trị là số nguyên

=>3n+2 chia hết cho n-1

=>(3n+2)-(n-1) chia hết cho n-1

=>(3n+2)-3(n-1) chia hết cho n-1

=>(3n+2)-(3n-1) chia hết cho n-1

=> 3n+2 - 3n -1 chia hết cho n-1

=>1 chia hết cho n-1

=> n=0;2

hok tốt nha

21 tháng 3 2017

=>3n+2chia hết cho n-1

n-1chia hết cho n-1

3n-1chia hết cho n-1

3n+2-3n-1 chia hết cho n-1

(3n-3n)+(2-1) chia hết cho n-1

0+1 chia hết cho n-1

1 chia hết cho n-1

=>n-1 thuộc Ư(1)

mà Ư(1)={-1;+1}

Lập bảng

n-1-1+1
n02
đánh giáthuộc Zthuộc Z

=>n={0;2} để n-1 thỏa mãn điều kiện

6 tháng 7 2015

câu GTLN nè:

A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:

* 3n+2=-1 => 5/-1=-5

* 3n+2=1 => 5/1=5

* 3n+2=5 => 5/5=1

* 3n+2=-5 => 5/-5=-1

=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)

 

17 tháng 4 2016

n=0;-2

17 tháng 4 2016

dễ :D

6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}

=> n=0;-2/3( loại) ;4/3( loại); -2

1 tháng 8 2015

A=3n+4/n-1=3n-3+7/n-1=3(n-1)/n-1+7/n-1=3+7/n-1. Vì A nguyên, 3 nguyên nên 7/n-1 nguyên => n-1 E Ư(7)

n-11-17-7
n208-6

 

b/6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1-5/3n+1=2-5/3n+1=>3n+1 E Ư(5)

3n+11-15-5
n0-2/34/3-2

 

13 tháng 4 2017

Tim gia tri n thuoc N, biet : 2n2 + 1/n2 - 1 de A nhan gia tri nguyen

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

9 tháng 4 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)

Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

9 tháng 4 2017

A=\(\dfrac{3.n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để A nguyên thì 5\(⋮\)n-1 hay n-1\(\in\)Ư(5)

Ta có bảng sau:

n-1 1 5 -1 -5
n 2 6 0 -4

Vậy n\(\in\){2;6;0;-4}