Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2-5n+1=n2-2n-3n+6-5=n(n-2)-3(n-2)-5 = (n-2)(n-3)-5
=> Để chia hết cho n-2 thì 5 chia hết cho n-2 => n-2=(-5,-1,1,5)
=> n=(-3, 1, 3, 7)
a/ n-2 thuộc B(4) ={0;4;8;12;16;...}
Vậy n thuộc {2;6;10;14;18;...}
b/ n-1 thuộc Ư(6) = {1;2;3;6}
Vậy n thuộc {2;3;4;7}
c/ n=3 hoặc n=4
CHÚC BẠN HỌC TỐT :)
n^2+5=n(n+1)+4
Suy ra n^2+5 chia hết cho n+1 khi và chỉ khi n+1 thuộc Ư(4) thuộc 1;-1;2;-2;4;-4
Suy ra n+1=1 Suy ra n=0
n+1=-1 Suy ra n=-2
n+1=2 Suy ra n=1
n+1=-2 Suy ra n=-3
n+1=4 Suy ra n=3
n+1=-4 Suy ra n=-5
Vậy n thuộc tập hợp 1; -3; 3; -5
a/ Z là gì??
b/ \(\frac{6}{n-1}\in Z=>\left(n-1\right)\inƯ\left(6\right)=>n-1=\left\{1;2;3;6\right\}=>n=\left\{0;1;2;5\right\}\)
c/\(\text{Ta có}:\frac{n}{n-2}=\frac{n-2+2}{n-2}=\frac{n-2}{n-2}+\frac{2}{n-2}=1+\frac{2}{n-2}=>n-2\inƯ\left(2\right)=\left\{1;2\right\}=>n=0\left(\text{Vì n }\in N\right)\)
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |