Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
a) Để B là phân số <=> 4n + 1 \(\ne\)0 <=> 4n \(\ne\)-1 <=> n \(\ne\)-1/4
b) Ta có: B = \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi n (n \(\ne\)-1/4) thì B là số nguyên
a) Để B là phân số thì
\(\hept{\begin{cases}8n+2\inℤ\\4n+1\inℤ\\4n+1\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n\inℤ\\n\ne-\frac{1}{4}\end{cases}}\)
b) \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi giá trị của n là số nguyên thì B là số nguyên
a,để n+1/n-3 nguyên thì n+1 chia hết cho n+3
n+1 chia hết cho n-3 hay n+1-(n-3) chia hết cho n-3
suy ra 4 chia hết cho n-3
suy ra n-3 thuộc ước của 4
suy ra n-3=1 or n-3=3
suy ra n=4 or n=6
a) \(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để phân số có giá trị nguyên => \(\frac{4}{n-3}\)có giá trị nguyên
=> 4 chia hết cho n - 3 => n - 3 thuộc Ư(4) = { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Vậy n thuộc các giá trị trên
b) \(\frac{8n+21}{4n+3}=\frac{2\left(4n+3\right)+15}{4n+3}=2+\frac{15}{4n+3}\)
Để phân số có giá trị nguyên => \(\frac{15}{4n+3}\)có giá trị nguyên
=> 15 chia hết cho 4n + 3 => 4n + 3 thuộc Ư(15) = { -15 ; -5 ; -3 ; -1 ; 1 ; 3 ; 5 ; 15 }
4n+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -9/2 | -2 | -3/2 | -1 | -1/2 | 0 | 1/2 | 3 |
n thuộc Z => n = { -2 ; -1 ; 0 ; 3 }
c) \(\frac{2n+5}{2n-1}=\frac{2n-1+6}{2n-1}=1+\frac{6}{2n-1}\)
Để phân số có giá trị nguyên => \(\frac{6}{2n-1}\)có giá trị nguyên
=> 6 chia hết cho 2n - 1 => 2n - 1 thuộc Ư(6) = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
2n-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5/2 | -1 | -1/2 | 0 | 1 | 3/2 | 2 | 7/2 |
n thuộc Z => n = { -1 ; 0 ; 1 ; 2 }
Bài 1:
\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)
Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)
Bài 3:
\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)
\(\Rightarrow n-2⋮n+3\)
\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)
ta có: \(A=\frac{8n-1}{4n+2}=\frac{2\left(4n+2\right)-5}{4n+2}\)
để \(A\in Z\Leftrightarrow-5⋮\left(4n+2\right)\)
\(\Leftrightarrow4n+2\inƯ\left(-5\right)\)
\(\Leftrightarrow4n+2\in\left(\pm1;\pm5\right)\)
\(\Leftrightarrow4n\in\left(-3;-1;-7;3\right)\)
\(\Leftrightarrow n \in\left(\frac{-3}{4};\frac{-1}{4};\frac{-7}{4};\frac{3}{4}\right)\)
Ta có:\(8n-1⋮4n+2\)
\(\Rightarrow8n-1+5-5⋮4n+2\)
\(\Rightarrow8n+4-5⋮4n+2\)
\(\Rightarrow2\left(4n+2\right)-5⋮4n+2\)
\(\Rightarrow-5⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
Vì \(4n+2\)là số chẵn
\(\Rightarrow n\)là số chẵn
Vậy \(n\in\varnothing\)