Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2n + 3 /3n-1 - n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 / 3n - 1 và n - 2 / 3n - 1 là số nguyên
suy ra : 2n + 3 chia hết cho 3n - 1
suy ra : n - 2 chia hết cho 3n - 1
rồi bạn lập bảng giá trị các ước nha
CHÚC BẠN HỌC TỐT ^_^
\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)
Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)
\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)
\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)
Vậy \(n=1;3\)
1, Ta có : ĐK \(n\ne1\)
a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)
để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)
Ta có bảng sau:
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
vậy n=-6, 0,2, 8
b, Ta có ĐK \(n\ne-\frac{1}{3}\)
\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)
để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3
c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)
\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)
để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)
kẻ bảng tìm giá trị n
d, ĐK : \(n\ne1\)phân tích:
\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)
để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n
2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)
hay \(2n+3\notinƯ\left(5\right)\)
kẻ bảng tìm giá trị của n
c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất
Và\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất và < 0 vì 5 là số dương
nên\(2n+3=-1\Rightarrow n=-2\)
thay n vào tính A vậy max A =7
để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất
\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0
vậy\(2n+3=1\Rightarrow n=-1\)
thay n vào để tìm min A=-3
câu a là vô tận
b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)
\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)
đến đó bạn tự làm nhé
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
A = \(\dfrac{3n-1}{n+2}\) (n \(\in\) z; n ≠ -2)
A \(\in\) Z ⇔ 3n - 1 ⋮ n + 2
3n + 6 - 7 ⋮ n + 2
3.(n + 2) - 7 ⋮ n + 2
7 ⋮ n + 2
n + 2 \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
Theo bảng trên ta có:
n \(\in\) {-9; -3; -1; 5}
Kết luận để A = \(\dfrac{3n-1}{n+2}\) là số nguyên thì n \(\in\) {-9; -3; -1; 5}