K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

riêng từng phân số hay cả 2 phân số đều là số nguyên vậy bạn!

7 tháng 2 2020

\(\frac{n+8}{7}\)có giá trị nguyên

th1 \(\frac{n+8}{7}\) là nguyên dương

\(\Leftrightarrow\orbr{\begin{cases}n+8>0\\7>0\end{cases}\Leftrightarrow\orbr{\begin{cases}n>-8\\7>0\end{cases}\Leftrightarrow}-8< n< 0< 7}\)

\(\Leftrightarrow\orbr{\begin{cases}n+8< 0\\7< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}n< -8\\7< 0\end{cases}\Leftrightarrow}-8>n>0>7\left(l\right)}\)

th2\(\frac{n+8}{7}\)là nguyên âm

\(\Leftrightarrow\orbr{\begin{cases}n+8>0\\7< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}n>-8\\7< 0\end{cases}\Leftrightarrow}-8< n< 7< 0\left(l\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}n+8< 0\\7>0\end{cases}\Leftrightarrow\orbr{\begin{cases}n< -8\\7>0\end{cases}\Leftrightarrow}-8>n>7>0\left(l\right)}\)

th3 \(\frac{n+8}{7}=0\)

\(\Leftrightarrow\orbr{\begin{cases}n+8=0\\7=0\left(l\right)\end{cases}}\Leftrightarrow n=-8\)

cộng các th ta có

\(-8\le n< 0< 7\)

vậy với\(-8\le n< 0< 7\)thì phân số có giá trị nguyên

31 tháng 10 2023

loading...  loading...  loading...  loading...  

18 tháng 2 2020

  Để phân số :\(\frac{2n+3}{7}\) có giá trị là số nguyên thì 2n+3:7

\(​​\implies\) \(2n+3=7k\)

 \(​​\implies\)  2n=7k-3

 \(​​\implies\)  n=\(\frac{7k-3}{2}\) 

Vậy với mọi số nguyên n có dang \(\frac{7k-3}{2}\) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

mà n là số nguyên

nên n thuộc {0;1;-1}

c: 2n+5/n-3 là số nguyên

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;14;-8}

A nguyên

=>2n+2+5 chia hết cho n+1

=>n+1 thuộc {1;-1;5;-5}

=>n thuộc {0;-2;4;-6}

13 tháng 1

Để \(\dfrac{2n+7}{n+1}\) có giá trị nguyên thì :

 2n + 7 ⋮ n + 1

=> (2n + 2) + 5 ⋮ n + 1

=> 2(n  + 1) ⋮ n + 1

 Vì 2(n + 1) ⋮ n + 1 nên 5 ⋮ n + 1

=> n + 1 ∈ Ư(5) ∈ {-5;-1;1;5}

 Với n + 1 = -5 => n = -6

Với n + 1 = -1 => n = -2

Với n + 1 = 1 => n = 0

Với n + 1 = 5 => n = 4

  Vậy n ∈ {-6;-2;0;4}

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh

 

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản