K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

để 7n + 13 ra số nguyên tốt thì bán lấy từng số n từ 1 đến 9 
để ko nhức đầu mik sẽ giải hộ bạn luôn
7n + 13 = ?
thay n = 6 vì 76 + 13 = 89. 89 là số nguyên tố
2n + 14 = ?
thay n = 3 vì 23 + 14 = 37. 37 là số nguyên tố 
#Học_Tốt

chào anh mạnh

k cho anh cây chus

mau len 

k đi lắc hihi

20 tháng 11 2016

ừm,tớ cũng chưa giải đc nè !

10 tháng 12 2016

Gọi d là ƯC của 7n + 10 và 5n + 7 

Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d

<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d 

<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d 

=> (35n + 50) - (35n + 49) chia hết cho d 

                          => 1 chia hết cho d 

                           => d = 1 

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau 

31 tháng 12 2018

Gọi d là ƯC của 7n + 10 và 5n + 7 

Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d

<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d 

<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d 

=> (35n + 50) - (35n + 49) chia hết cho d 

                          => 1 chia hết cho d 

                           => d = 1 

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau 

24 tháng 11 2017

mk nghĩ là 3

7 tháng 12 2020

em là người đầu tiên đọc được nhưng tiếc là em mới lớp 4 

7 tháng 12 2020

a) Giả sử 4n + 34n + 3 và 2n + 32n + 3 cùng chia hết cho số nguyên tố d thì:
2(2n + 3) − (4n + 3) ⋮ d → 3 ⋮ d → d = 3
Để (2n + 3,4n + 3) = 1 thì d≠3. Ta có:
4n + 3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.
Kết luận: Với n không chia hết cho 3 thì 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau.
b) Giả sử 7n + 13 và 2n + 4 cùng chia hết cho số nguyên tố d.
Ta có: 7(2n + 4) − 2(7n + 13) ⋮ d → 2 ⋮ d→ d ∈ {1; 2}
Để (7n + 13, 2n + 4) = 1 thì d ≠ 2
Ta có: 2n + 4 luôn chia hết cho 2 khi đó 7n + 13 không chia hết cho 2 nếu 7n chia hết cho 3 hay n chia hết cho 2..
Kết luận: Với n chẵn thì thì 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.

cGiả sử 18n + 3 và 21n + 7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n + 7) − 7(18n + 3) ⋮ d → 21 ⋮ d → d ∈ {3; 7}. Hiển nhiên d ≠ 3 vì 21n + 721n + 7 không chia hết cho 3.
Để (18n + 3, 21n + 7) = 1 thì d ≠ 7 tức là 18n + 3 không chia hết cho 7, nếu 18n + 3 − 21 không chia hết cho 7 ↔ 18(n − 1) không chia hết cho 7↔n − 1 không chia hết cho 7 ↔ n ≠ 7k + 1 (k ∈ N).
Kết luận: Với n ≠ 7k + 1 (k ∈ N) thì 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.