\(P=\frac{n+3}{n-1}+\frac{3n+5}{n-1}-\frac{2n-2}{n-1}\) là số nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

\(P=\frac{n+3}{n-1}+\frac{3n-5}{n-1}-\frac{2n-2}{n-1}\)

\(P=\frac{\left(n+3\right)+\left(3n+5\right)-\left(2n-2\right)}{n-1}=\frac{n+3+3n+5-2n+2}{n-1}=\frac{\left(n+3n-2n\right)+\left(3-5+2\right)}{n-1}=\frac{2n}{n-1}\)

để \(P\in Z\Leftrightarrow\frac{2n}{n-1}\in Z\)

\(\frac{2n}{n-1}=\frac{2\left(n-1\right)+2}{n-1}=2+\frac{2}{n-1}\in Z\)

=>2 chia hết cho n-1

=>..... (tự làm tiếp)

12 tháng 3 2016

Hỏi thì đừng tự trả lời nhá you

19 tháng 12 2023

Em con quá non

29 tháng 3 2020

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n+5}{n-3}\)

\(=\frac{n+1}{n-3}\)

a) Để A là phân số thì \(n-3\ne0\)

\(\Leftrightarrow n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

Ta có n+1=n-3+4

=> 4 \(⋮\)n-3

=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng

n-3-4-2-1124
n-112457
29 tháng 3 2020

Đặt  \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)

a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)

b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)

A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 31-12-23-36-6
n4251609-3
8 tháng 8 2016

Để 2n + 3 /3n-1 - n - 2 / 3n - 1 là số nguyên 

suy ra : 2n + 3 / 3n - 1 và n - 2 / 3n -  1 là số nguyên 

suy ra : 2n + 3 chia hết cho 3n - 1 

suy ra : n - 2 chia hết cho 3n - 1 

rồi bạn lập bảng giá trị các ước nha 

CHÚC BẠN HỌC TỐT ^_^

20 tháng 12 2021

cục cức chấm mắm

18 tháng 2 2017

câu a là vô tận

b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)

\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)

đến đó bạn tự làm nhé

7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....