K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(6n-1⋮n-1\)

\(\Rightarrow6.\left(n-1\right)+5⋮n-1\)

MÀ \(6.\left(n-1\right)⋮n-1\)\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA có bảng sau : 

n - 1 1-15-5
n206-4

Vậy n \(\in\left\{2;0;6;-4\right\}\)

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

31 tháng 3 2015

n = 6

6 tháng 1 2017

n= 6

ai tk mk

mk tk lại

mk hứa

yên tâm

thank you

5 tháng 5 2021

nhầm (n+5)(n+6)

 

5 tháng 5 2021

n thuộc N hay Z

5 tháng 5 2021

thuộc N ko thấy là số tự nhiên à

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$125=5^3$

$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$

Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.

Do đó để $A\vdots $ thì $n\vdots 125$

Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$

Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại

Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$

Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên

$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên

Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.

24 tháng 2 2020

A = ( n + 5 ) ( n + 2 ) = n2 + 7n + 10 

A : 6n = \(\frac{\left(n^2+7n+10\right)}{6n}=\frac{1}{6}\left(n+\frac{10}{n}+7\right)\)

Để A chia hết cho 6n

thì  \(n+\frac{10}{n}+7\) chia hết cho 6

=> \(n+\frac{10}{n}+7\in B\left(6\right)\)(1)  và  \(n\inƯ\left(10\right)\)(2)

Giải ( 2) ta có: n là số nguyên dương 

=> n \(\in\){ 1; 2; 5; 10 }

Với n = 1, ta có: \(n+\frac{10}{n}+7=1+10+7=18\) chia hết cho 6 => n = 1 thỏa mãn

Với n = 2 ta có: \(n+\frac{10}{n}+7=2+\frac{10}{5}+7=11\)không chia hết cho 6 => loại

Với n = 5 ta có: \(n+\frac{10}{n}+7=5+\frac{10}{5}+7=14\)không chia hết cho 6 => loại

Với n = 10  ta có: \(n+\frac{10}{n}+7=10+\frac{10}{10}+7=18\) chia hết cho 6 => n = 10 thỏa mãn

Vậy n \(\in\){ 1; 10 }