K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

A=\(\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

để A đạt GTLN thì \(\frac{3}{n+1}\)đạt GTLN

=> n+1 là số nguyên dương nhỏ nhất

=> n+1=1

=> n=0 (tmđk)

*)làm tương tự với TH nhỏ nhất

16 tháng 4 2020

\(A=\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

* Để A đạt GTLN => \(\frac{3}{n+1}\)có GTLN 

=> n + 1 = số nguyên dương nhỏ nhất

=> n + 1 = 1

=> n = 0

Với n = 0 => \(A=2+\frac{3}{0+1}=2+3=5\)

Vậy MaxA = 5 khi n = 0

* GTNN thì mình chịu nhé xD * 

18 tháng 3 2016

a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3

Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 4n - 6 chia hết cho 2n + 3

=> -5 chia hết cho 2n + 3

=> 2n + 3 thuộc {-1; 1; -5; 5}

=> 2n thuộc {-4; -2; -8; 2}

=> n thuộc {-2; -1; -4; 1}

b, Ta có:

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)

=> 2n + 3 = 1

=> 2n = -2

=> n = -1

+ Lớn nhất xét tương tự

15 tháng 11 2023

Vũ™©®×÷|

27 tháng 3 2020

a

Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

b

A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)

\(\Rightarrow\frac{5}{2n-1}\inℤ\)

\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)

c

\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)

15 tháng 3 2016

Ai k cho mình tròn 60 với

15 tháng 3 2016

k cho minh vs 

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

17 tháng 5 2016

a) \(P=\frac{n^2+n+n+1-5}{n+1}=\frac{n\left(n+1\right)+\left(n+1\right)-5}{n+1}\)

\(P=n+1+\frac{-5}{n+1}\)

\(P\in Z< =>n+1\inƯ\left(-5\right)\)

n+11-15-5
n0-24-6

Vậy \(P\in Z< =>x\in\left\{-6;-2;0;4\right\}\)

6 tháng 8 2020

Bg

a) Ta có: B = \(\frac{4n+1}{2n-3}\)            (n thuộc Z)

Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)

=> 4n + 1 ⋮ 2n - 3

=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3

=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3

=> 4n + 1 - (4n - 6) chia hết cho 2n - 3

=> 4n + 1 - 4n + 6 chia hết cho 2n - 3

=> 4n - 4n + 1 + 6 chia hết cho 2n - 3

=> 7 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

Ư(7) = {1; 7; -1; -7}

Lập bảng:

2n - 3 =17-1-7
n =251-2
(loại vì không phải scp) (loại)(loại) 

Vậy n = {2; -2} thì B là số chính phương

b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3  (ta chỉ cần loại những số n trong bảng)

=> n không thuộc {2; 5; 1; -2}

c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0

=> 2n - 3 = 1

=> 2n = 1 + 3

=> 2n = 4

=> n = 4 : 2

=> n = 2

Vậy n = 2 thì B đạt GTLN

b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d

                                                                                                        => 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d

=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)

c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).

Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.

2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm. 

Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất. 

                                                                                                                      => 2n - 3 đặt giá trị dương nhỏ nhất .