Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p = ( n - 2 ) . ( n2 + n - 5 ) \(\Rightarrow\)( n - 2 ) và ( n2 + n - 5 ) \(\in\)Ư ( p )
Vì p là số nguyên tố \(\Rightarrow\)n - 2 = 1 hoặc n2 + n - 5 = 1
+) nếu n - 2 = 1 \(\Rightarrow\)n = 3 thì p = ( 3 - 2 ) . ( 33 + 3 - 5 ) = 1 . 7 = 7 ( chọn )
+) nếu n2 + n - 5 = 1 \(\Rightarrow\)n2 + n = 6 \(\Rightarrow\)n . ( n + 1 ) = 6 = 2 . 3 \(\Rightarrow\)n = 2
n = 2 thì p = ( 2 - 2 ) . ( 22 + 2 - 5 ) = 0 ( không phải là số nguyên tố, loại )
Vậy n = 3 thì p = ( n - 2 ) . ( n2 + n - 5 ) là số nguyên tố
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
a: Trường hợp 1: p=2
=>7p+5=19(nhận)
Trường hợp 2: p=2k+1
\(7p+5=14k+7+5=14k+12⋮2\)
=>Loại
Vậy: p=2
b: TRường hợp 1: p=2
=>11p+23=45(loại)
Trường hợp 2: p=2k+1
=>11p+23=22k+11+23=22k+34(loại)
Vậy: Ko có số p nào thỏa mãn