K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

phantuananh bây giờ điểm âm rồi à

19 tháng 11 2015

còn 10 điểm nữa mình lên bảng xếp hạng

3 tháng 6 2017

Vì p = ( n - 2 ) . ( n2 + n - 5 ) \(\Rightarrow\)( n - 2 ) và ( n2 + n - 5 ) \(\in\)Ư ( p )

Vì p là số nguyên tố \(\Rightarrow\)n - 2 = 1 hoặc n2 + n - 5 = 1

+) nếu n - 2 = 1 \(\Rightarrow\)n = 3 thì p = ( 3 - 2 ) . ( 33 + 3 - 5 ) = 1 . 7 = 7 ( chọn )

+) nếu n2 + n - 5 = 1 \(\Rightarrow\)n2 + n = 6 \(\Rightarrow\)n . ( n + 1 ) = 6 = 2 . 3 \(\Rightarrow\)n = 2

n = 2 thì p = ( 2 - 2 ) . ( 22 + 2 - 5 ) = 0 ( không phải là số nguyên tố, loại )

Vậy n = 3 thì p = ( n - 2 ) . ( n2 + n - 5 ) là số nguyên tố

Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 tai jđây nhé ! mk ngại viết 

Bài 1:

Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)

Vì \(p=a+b>2\)nên p là số lẻ 

\(\Rightarrow a+b\)và \(c-d\)là các số lẻ 

Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)

Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)

Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)

Ta cần tìm số nguyên tố a  để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố 

Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)

Bài 2 :

Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p

Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)

Nếu \(n-2=1\)thì \(n=3\)

Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn) 

Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)

Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố

Vậy \(n=3\)

Chúc bạn học tốt ( -_- )

10 tháng 11 2014

làm lời giải ra cho mình

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

a: Trường hợp 1: p=2

=>7p+5=19(nhận)

Trường hợp 2: p=2k+1

\(7p+5=14k+7+5=14k+12⋮2\)

=>Loại

Vậy: p=2

b: TRường hợp 1: p=2

=>11p+23=45(loại)

Trường hợp 2: p=2k+1

=>11p+23=22k+11+23=22k+34(loại)

Vậy: Ko có số p nào thỏa  mãn

14 tháng 1 2016

1 số nguyên tố

2 n = 1 ; n = 2

 

14 tháng 1 2016

Giải thích ra giùm mình với!