K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

Để \(13 \vdots (2n - 1)\)

thì \((2n - 1) \epsilon Ư(13)\)

\(Ư (13) = \left \{ - 13; - 1 ; 1; 13 \right \}\)

Do đó:

2n - 1 = - 13 => n = - 6

2n - 1 = - 1 => n = 0

2n - 1 = 1 => n = 1

2n - 1 = 13 => n = 7

Vậy \(n \epsilon \left \{ - 6;0;1;7 \right \}\) thì \(13 \vdots (2n - 1)\)

11 tháng 7 2018

13chia hết cho (2n - 1)

⇒2n-1 ∈ Ư(13)

Ư(13)={-1;1;-13;13}

2n-1 -1 1 -13 13
n 0 1 -6

7

➤ n ∈ {0;1;-6;7}

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

5 tháng 5 2020

a) Ta có 2n+8=2(n-3)+14

=> 14 chia hết cho n-3

n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}

ta có bảng

n-3-14-7-2-112714 
n-11-412451017 


Vậy n={-11;-4;-1;2;4;5;10;17}

5 tháng 5 2020

b) Ta co 3n+11=3(n-5)-4

=> 4 chia hết chia hết cho n+5 

n nguyên => n+5 nguyên

=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

n+5-4-2-1124
n-9-7-6-4-3-1

vậy n={-9;-7;-6;-4;-3;-1}

12 tháng 10 2019

22 tháng 12 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

30 tháng 3 2017

10 tháng 11 2023

A

8 tháng 9 2019

Lớp 12 ?!

Ta có:

7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N

8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N

\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)

21 tháng 6 2017

Sửa đề:

Ta có:\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\forall n\)

\(\Rightarrowđpcm\)