Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(x⋮12;x⋮21;x⋮28\)và \(150< x< 300\)
Vì \(x⋮12;x⋮21;x⋮28\) Nên \(x\in BC\left(12;21;28\right)\)
\(12=2^2.3\)
\(21=3.7\)
\(28=2^2.7\)
\(\Rightarrow\)\(BCNN\left(12;21;28\right)=2^2.3.7=84\)
\(\Rightarrow\)\(x\in BC\left(12;21;28\right)=B\left(84\right)=\left\{0;84;168;252\right\}\)
Vì \(150< x< 300\)Nên \(x\in\left\{168;252\right\}\)
\(b)\)\(x⋮12;x⋮15;x⋮30\)và \(0< x< 500\)
Vì: \(x⋮12;x⋮15;x⋮30\)Nên \(x\in BC\left(12;15;30\right)\)
\(12=2^2.3\)
\(15=3.5\)
\(30=2.3.5\)
\(\Rightarrow\)\(BCNN\left(12;15;30\right)=2^2.3.5=60\)
\(\Rightarrow\)\(BC\left(12;15;30\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;420;480;540;...\right\}\)
Vì: \(0< x< 500\)Nên \(x\in\left\{60;120;180;240;...;480\right\}\)
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
Vì \(a< b< c< d< m< n\)
\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Bài giải
Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)
\(c< d\text{ }\Rightarrow\text{ }2c< c+d\)
\(m< n\text{ }\Rightarrow\text{ }2m< m+n\)
\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)
\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
B) \(1< 3^n< 81\Rightarrow1< 3^n< 3^4\Leftrightarrow n\in\left\{1;2;3\right\}\)
C) \(4\le2^n\le64\Rightarrow2^2\le2^n\le2^6\Leftrightarrow n\in\left\{2;3;4;5;6\right\}\)
D) \(4\le4^n\le256\Rightarrow4^1\le4^n\le4^4\Leftrightarrow n\in\left\{1;2;3;4\right\}\)
phần A thì mình chịu