\(8^n\div2^n=16^{2011}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(8^n:2^n=16^{2011}\)

\(\Leftrightarrow4^n=\left(4^2\right)^{2011}\)

\(\Leftrightarrow n=4022\)

b) Ta có: \(2^n+2^{n+3}=144\)

\(\Leftrightarrow2^n\left(1+2^3\right)=144\)

\(\Leftrightarrow2^n=16\)

hay n=4

27 tháng 7 2021

\(8^n\div2^n=16^{2011}\)

\(\left(8\div2\right)^n=\left(4^2\right)^{2011}\)

\(4^n=4^{4022}\)

\(\Rightarrow n=4022\)

mình nghĩ ý b là

\(2^n+2^{n+3}=144\)

\(2^n+2^n\cdot2^3=144\)

\(2^n\left(1+8\right)=144\)

\(2^n\cdot9=144\)

\(2^n=16\)

\(2^n=2^4\)

\(\Rightarrow n=4\)

27 tháng 1 2016

ok con de

3 tháng 10 2016

a) Ta có 

x8=(x4)2=>n=4

20 tháng 7 2019

1. Tìm x, biết :

a. ( x - \(\frac{3}{4}\)\(^2\)= 0

=> x - \(\frac{3}{4}\)= 0

=> x = 0 + \(\frac{3}{4}\)

=> x = \(\frac{3}{4}\)

b. ( x + \(\frac{1}{2}\)\(^2\)\(\frac{9}{64}\)

=> ( x + \(\frac{1}{2}\)\(^2\)= ( \(\frac{3}{8}\)\(^2\)

=> x + \(\frac{1}{2}\)\(\frac{3}{8}\)

=> x = \(\frac{3}{8}\)\(\frac{1}{2}\)

=> x = \(\frac{-1}{8}\)

c.  \(\frac{\left(-2\right)^x}{16}=-8\)

=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)

=> ( -2)\(^x\)= -128

=> ( -2 ) \(^x\)= ( -2) \(^7\)

=> x = 7

16 tháng 12 2016

a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)

\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)

\(15\cdot25^n-3\cdot25^n=300\)

\(25^n\cdot12=300\)

\(25^n=25\)

\(\Rightarrow n=1\)

b)\(f\left(x\right)=6x^4-2x^3+5=5\)

\(6x^4-2x^3=0\)

\(6x^4=2x^3\)

\(3x^4=x^3\)

\(3x^4-x^3=0\)

\(x^3\left(3x-1\right)=0\)

\(\Rightarrow x^3=0\) hoặc 3x-1=0

\(\Rightarrow x=0,3x=1\)

\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))

Vậy x=0

10 tháng 7 2017

1. Tìm n, biết:

a) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)

(-2)n + 2 = (-2)5

n + 2 = 5

n = 5 - 2

n = 3.

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow\dfrac{2^3}{2^n}=2\)

\(\Rightarrow\) 2n . 2 = 23

n + 1 = 3

n = 3 - 1

n = 2.

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

2n - 1 = 3

2n = 3 + 1

2n = 4

n = 4 : 2

n = 2.

2. Tính:

a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)

\(=\left(\dfrac{1}{2}\right)^7\)

\(=\dfrac{1}{128}\)

b) 273 : 93

= (33)3 : (32)3

= 39 : 36

= 33

= 27

c) 1252 : 253

= (53)2 : (52)3

= 56 : 56

= 1

d) \(\dfrac{27^2.8^5}{6^6.32^3}\)

\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)

\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)

\(=\dfrac{3^6}{6^6}\)

\(=\dfrac{1}{64}.\)

10 tháng 7 2017

B2 :

b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)

c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1

28 tháng 9 2019

Biểu diễn sai là :

A) \(\frac{5}{12}=0,2\left(16\right)\)

28 tháng 9 2019

Biểu diễn sai là: A) \(\frac{5}{12}=0,2\left(16\right)\)

\(\frac{5}{12}=0,41\left(6\right).\)

Chúc bạn học tốt!

30 tháng 3 2017

Giải:

Thay \(2012=x+1\) vào biểu thức ta có:

\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)

\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)

\(=x-1\)

\(\Rightarrow B=2011-1=2010\)

Vậy \(B=2010\)

7 tháng 3 2018

00000000000000000000000000000000

7 tháng 3 2017

\(A=\frac{5n+1}{n+1}=\frac{5n+5-4}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5-\frac{4}{n+1}\)

Để \(5-\frac{4}{n+1}\) là số tự nhiên \(\Leftrightarrow\frac{4}{n+1}\)là số tự nhiên 

=> n + 1 là ước tự nhiên của 4 => Ư(4) = { 1; 2; 4 }

Ta có : n + 1 = 1 <=> n = 1 - 1 => n = 0 (TM)

           n + 1 = 2 <=> n = 2 - 1 => n = 1 (TM)

           n + 1 = 4 <=> n = 4 - 1 => n = 3 (TM)

Vậy n = { 0; 1; 3 } thì A là số tự nhiên

7 tháng 3 2017

Để \(A=\frac{5n+1}{n+1}\in N\left(n\ne1\right)\) thì 5n + 1 chia hết cho n + 1

<=> 5n + 5 - 4 chia hết cho n + 1

=> 5(n + 1) - 4 chia hết cho n + 1

=> 4 chia hết cho n + 1

=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}

Ta có bảng:

n + 1-4-2-1124
n-5-3-2013