K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

Tính không làm đâu. Do làm biếng mà thấy không ai giúp hết nên để t giúp vậy

Gọi số chính phương cần tìm là abcd ta có

abcd = 1000a + 100b + 10c + d = X2

(a+1)(b+1)(c+1)(d+1) = 1000(a+1) + 100(b+1) + 10(c+1) + (d+1) =Y2

=> Y2 - X2 = (Y - X)(Y + X) = 1111 = 101 \(\times\)11

\(\Rightarrow\hept{\begin{cases}Y-X=1\\Y+X=1111\end{cases}OR\hept{\begin{cases}Y-X=11\\Y+X=101\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}Y=556\\X=555\end{cases}\left(loai\right)or\hept{\begin{cases}Y=56\\X=45\end{cases}\left(nhan\right)}}\)

Vậy số cần tìm là \(45^2=2025\)

16 tháng 10 2016

số chính phương mà kêu toán lp 9 ak 

29 tháng 8 2016

Gọi số phải tìm là abcd = n² 
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n 
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên: 
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N) 
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣) 
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n. 
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd 
Ta có: 
m = k.n ≤ 99 
32 ≤ n 
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 
Như vậy: k = 2 hoặc 3 
+Nếu k = 2 thì: dcba = 4.abcd (♥) 
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1. 
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6 
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ) 
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý) 
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦) 
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9 
<=> 10c = 800b+80 <=> c = 80b+8 
Điều này chỉ có thể xảy ra <=> b=0 và c=8 
KL: số phải tìm là: 1089 

31 tháng 12 2017

Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên. 
2 số cần tìm : 
9801 = 99^2 
và 1089 = 33^2 

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

28 tháng 5 2016

hổng biết nha bạn

m cx đng cần gấp