Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là số tự nhiên cần tìm
A = 60. q + 31
A = 12. 17 + r ( 0 < r < 12 )
Ta có: 60. q chia hết cho 12 và 31 : 12 dư 7
Vây r = 7
Số dư là 7
Gọi a là thương của phép chia thứ 1
Gọi r là số dư của phép chia thứ 2
Từ phép chia thứ nhất ta có : a x 60 + 31 (1)
Từ phép chia thứ hai ta có : 12 x 17 + r (2)
Trong đó a, r là STN và 0 < r < 12
Từ (1) ta có : a x 60 + 31 = a x 5 x 12 + 12.2 +7 = 12 x ( a x 5 + 2 ) + 7
Từ (2) ta có : 12 x 17 + r = 12 x ( a x 5 + 2 ) + 7
Vậy r = 7
Đ/S : 7
Gọi a là số tự nhiên cần tìm
a = 60.q + 31
a = 12.17 + r (0≤ r < 12)
ta lại có 60.q ⋮ 12 và 31 chia 12 dư 7
Vậy r = 7
Vậy a = 12.17+7= 211
_ Gọi số tự nhiên cần tìm là : \(a.\)
\(a=60\times q+31\)
\(a=12\times17+r\) \(\left(0\le r< 12\right).\)
_ Ta lại có \(60\times q\)\(⋮\)\(12\)và \(31\div12\)dư \(7.\)
- Vậy \(r=7.\)
\(\Rightarrow a=12\times17+7\)
\(=211.\)
_ Vậy số tự nhiên đó là \(211.\)