\(x^3+ax^2+bx+c\). Biết rằng đa thức có nghiệm và a+2b+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Theo bài ra ta có:  a+2b+4c+1/2=0

(cái này là mẹo nhé: Nhận thấy đơn thức c ko có biến x nên ta sẽ lấy 4 làm thừa số chung.)

=>   4(1/4.a + 1/2.b+c+1/8) = 0

<=> 1/4.a + 1/2.b + c + 1/8 = 0

<=> (1/2)^3 + (1/2)^2. a +1/2.b + c =0

<=> P(1/2) = 0

Vậy 1/2 là 1 nghiệm của đa thức P(x)

Nhớ cái mẹo nhé! ^^

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks

13 tháng 5 2016

Theo đề bài ta có: a+2b+4c=\(\frac{-1}{2}\)

<=>\(\frac{1}{2}\)+a+2b+4c=0

<=>\(\frac{1}{8}\)+\(\frac{a}{4}\)+\(\frac{b}{2}\)+c=0(chia cả 2 vế cho 4)

vậy x=\(\frac{1}{2}\) là nghiệm  của đa thức P(x)

13 tháng 8 2018

a)Theo đề bài ta có:\(A\left(x\right)=ax^2+x-3\) có ngiệm là \(\dfrac{1}{2}\)

=>\(A\left(\dfrac{1}{2}\right)=a\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a-\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{5}{2}\)

\(\Leftrightarrow a=\dfrac{5}{2}:\dfrac{1}{4}=10\)

vậy hệ số a=10

b)Theo đề bài ta có: \(Q\left(x\right)=mx^2-2mx-3\) có nghiệm x=-1

=>\(Q\left(-1\right)=m\left(-1\right)^2-2m\left(-1\right)-3=0\)

\(\Leftrightarrow m+2m-3=0\)

\(\Leftrightarrow3m=3\Leftrightarrow m=1\)

Vậy hệ số m của đa thức là 1

19 tháng 4 2017

P(x) có nghiệm là 1212 tức là P(1212) = 0 do đó :

a.14+5.123=0a.14+5.12−3=0

a.14=352a.14=3−52

a14=12a14=12

a=12.4a=12.4

a = 2

Vậy đa thức P(x) =2x2 + 5x - 3

19 tháng 4 2017

P(x) có nghiệm là \(\dfrac{1}{2}\) tức là P(\(\dfrac{1}{2}\)) = 0 do đó :

a.\(\dfrac{1}{4}\)+5.\(\dfrac{1}{2}\)−3=0

a.\(\dfrac{1}{4}\)=3−\(\dfrac{5}{2}\)

a.\(\dfrac{1}{4}\)=\(\dfrac{1}{2}\)

a=\(\dfrac{1}{2}\).4

a = 2

Vậy đa thức P(x) =2x2 + 5x - 3


17 tháng 5 2018

Đa thức  f(x)  có 2 nghiệm là x = 1;  x = -1  nên ta có:

\(f\left(1\right)=1+a+b-2=0\)             \(\Leftrightarrow\)\(a+b=1\)

\(f\left(-1\right)=1+a-b-2=0\)  \(\Leftrightarrow\) \(a-b=1\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

Vậy...

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

28 tháng 3 2017

Bài 1:

Ta có:

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}\)

\(1-\dfrac{1}{100!}< 1\)

Nên \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay vào biểu thức ta có:

\(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)

\(=\dfrac{a+b}{a}.\dfrac{c+a}{c}.\dfrac{b+c}{b}\)

\(=\dfrac{2a.2b.2c}{abc}\)

\(=\dfrac{8\left(abc\right)}{abc}=8\)

Vậy \(B=8\)

1 tháng 4 2017

bài 3:

Ta có a+2b+ac= -1/2

<=> 1/2+a+2b+ac=0
 

chia 2 vế cho 4 ta được: \(\frac{ }{12}\)(1/2)^3+a(1/2)^3+b(1/2)+c=0

<=> 1/8+a/4+b/2+c=0

<=> P(1/2)=0

Vậy x=1/2 là một nghiệm của đa thức\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)