Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x=\sqrt{2}+\sqrt{3}\)
nên \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\) \(x^2=5+2\sqrt{6}\)
\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)
\(\Leftrightarrow\) \(x^4-10x^2+25=24\)
hay \(x^4-10x^2+1=0\)
Đa thức \(a^4-10a^2+1=0\) là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\) làm nghiệm
a, => p^2 = 5q^2 + 4
+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )
+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5
=> p^2 = 5q^2 + 4 chia hết cho 3
=> p chia hết cho 3 ( vì 3 là số nguyên tố )
=> p = 3 => q = 1 ( ko t/m )
Vậy p=7 và q=3
Tk mk nha
f(x) = ax\(^2\)+bx + 2019
=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)
<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)
<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)
Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:
(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)
=> \(f\left(1-\sqrt{2}\right)=2020\)