Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x^2 -6x +a =4x(x-3)+6x +a =4x(x-3)+6(x-3) +a+18
để \(\left(4x^2-6x+a\right)⋮\left(x-3\right)\Rightarrow a=-18\)
a) Đặt \(f_{\left(x\right)}=2x^2+x+a\)
Để \(f_{\left(x\right)}⋮x+3\)
\(thì\Rightarrow f_{\left(x\right)}:x+3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(-3\right)}=0\)
\(\Rightarrow2\cdot\left(-3\right)^2+\left(-3\right)+a=0\\ \Rightarrow15+a=0\\ \Rightarrow a=-15\)
Vậy để \(2x^2+x+a⋮x+3\)
\(thì\text{ }a=-15\)
b) Đặt \(f_{\left(x\right)}=4x^2-6x+a\)
Để \(f_{\left(x\right)}⋮x-3\)
\(thì\text{ }f_{\left(x\right)}:x-3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(3\right)}=0\)
\(\Rightarrow4\cdot3^2-6\cdot3+a=0\\ \Rightarrow18+a=0\\ \Rightarrow a=-18\)
Vậy để \(4x^2-6x+a⋮x-3\)
thì \(a=-18\)
c) Đặt \(f_{\left(x\right)}=x^3+ax^2-4\)
Để \(f_{\left(x\right)}⋮x^2+4x+4\)
\(thì\text{ }f_{\left(x\right)}⋮\left(x+2\right)^2\\ \Rightarrow f_{\left(x\right)}:\left(x+2\right)^2\text{ }dư\text{ }0\)
\(\Rightarrow Theo\text{ }định\text{ }lí\text{ }Bê-du:\text{ }f_{\left(-2\right)}=0\\ \Rightarrow\left(-2\right)^3+a\cdot\left(-2\right)^2-4=0\\ \Rightarrow-12+4a=0\\ \Rightarrow4a=12\\ \Rightarrow a=3\)
Vậy để \(x^3+ax^2-4⋮x^2+4x+4\)
\(thì\text{ }a=3\)
a: \(\Leftrightarrow x^3+4x^2+4x+\left(a-4\right)x^2+\left(4a-16\right)x+\left(4a-16\right)+\left(-4a+12\right)x-4a+12⋮x^2+4x+4\)
=>-4a+12=0
=>a=3
b: \(\Leftrightarrow x^3-2x^2-2x+2x^2-4x-4+\left(a+6\right)x+b+4⋮x^2-2x-2\)
=>a+6=0 và b+4=0
=>a=-6; b=-4
Ta có : 2x2 - 2x +1 = 2x2 + x - 2x -1 + 2 = x(2x + 1) - ( 2x + 1) + 2 chia hết cho 2x + 1 khi và chỉ khi 2 chia hết cho 2x + 1 mà x nguyên
=> 2x + 1 thuộc ước của 2. Mặt khác 2x + 1 là một số lẻ
Với 2x + 1 =1 => x = 0
\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
Câu 1:
\(\Leftrightarrow2n^2-4n+5n-10+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
Câu 2:
b: \(\dfrac{x^4-4x^2+2x-4a}{x-2}=\dfrac{x^4-2x^3+2x^3-4x^2+2x-4+4-4a}{x-2}\)
\(=x^3+2x^2+2+\dfrac{4-4a}{x-2}\)
Để dưlà -23 thì 4-4a=-23
=>4a=27
=>a=27/4
Bài 1:
a: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Bạn đọc lại đề nhé Ngô Khánh Linh ! Bài này không có giá trị thỏa mãn vì x là số nguyên.